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PROFINITE GROUPS, INFINITE GALOIS THEORY

1. Consider a topological group G.

(a) Show that if G is hausdorff, then the center of G and the centralizer of any
element g € GG are closed subgroups.

(b) Show that for any continuous action of G on a topological space the stabilizer
of any closed point is closed.

(c¢) Show that G is hausdorff if and only if G is Ty. (A topological space is called
Ty if for any two distinct points, one of them possesses a neighborhood that
does not contain the other.)

Solution:

(a) If a topological space is hausdorff, then every point is closed. Since for any
g € G the map G — G, h — [g,h] = ghg 'h™! is continuous, it follows that
the centralizer Centg(g) := {h € H: [g,h] = 1} is a closed subset. As an
intersection of the closed subsets the center Z(G) := [, . Cente(g) is then
also a closed subset.
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(b) By assumption the action G x X — X is a continuous map; hence so is the
map G — X, g — gx for any x € X. If x is a closed point, it follows that
Stabg(x) :={g € G: gr = x} is a closed subset.

(c¢) Every hausdorff space is Ty. Conversely suppose that G is Ty. Consider
two distinct points g, h € G. Suppose that U C G is an open subset with
g € U > h. Since inversion on G is a homeomorphism, the subset U~! :=
{u™ | w € U} is again open with g7 ¢ U~ > h~!. Since left and right
translation by fixed elements of G are homeomorphisms, it follows that gU ~'h
is again open with h = gg~'h & gU'*h > gh=*h = g. Thus G is 1.
This implies that every point in G is closed. Since the map G x G — G,
(g,h) — gh™! is continuous, it follows that the diagonal {(g,h) € G x G |
gh™' =1} is closed. But this implies that G is hausdorff.

*2. A topological space is called totally disconnected if every connected subset contains
only one element. Prove that a topological group is profinite if and only if it is
compact and totally disconnected.

Solution: See Proposition 1.1.3 in Cohomology of Number Fields by J. Neukirch.



3. Consider a Galois extension L/K with I' := Gal(L/K) and an intermediate field
K’ with I := Gal(L/K'). Show that K'/K is Galois if and only if IV<I", and that
then there is a natural isomorphism of profinite groups I'/I" = Gal(K'/K).

Solution: First we claim that K'/K is Galois if and only if v(K’) = K’ for all
v € I'. To see this observe that since L/K is separable, so is K'/K. Thus K'/K
is Galois if and only if it is normal. Choosing an algebraic closure L of L, this
is equivalent to saying that for every homomorphism o: K’ — L over K we have
o(K') C K'. Since L/K is algebraic, any such homomorphism o can be extended
to a homomorphism 6: L — L over K. Moreover, since L/K is normal, for any
such & we have (L) C L, and since L/K is algebraic even ¢(L) = L. Thus &
induces an element v € Gal(L/K) = I'. Together this shows that K'/K is Galois
if and only if v(K') C K’ for every v € I'. Since again K'/K is algebraic, for any
such v we then even have y(K’) = K’. This proves the claim.

Next, for any elements v, € I' we have
Vel <= |K =id <= Wy 'K =id < vy ' € Gal(L/v(K")).

Thus for any v € T' we have Gal(L/v(K')) = yI"y~'. By the bijective Galois
correspondence we therefore have y(K’) = K’ if and only if yI"y~! = I". Varying
~ and using the above claim it follows that K'/K is Galois if and only if IV < T.

Now assume that K’/K is Galois. By the claim we then have a natural homomor-
phism B
c:I'=Gal(L/K) — T :=Gal(K'/K), v+ v|K'

By construction its kernel is Gal(L/K’) = I". On the other hand, by the same
argument as above any isomorphism K’ — K’ over K extends to an isomorphism
L — L over K; so c is surjective. Together it thus induces a group isomorphism
c: /T =T

Next, the subgroups Gal(K’/K") for all subfields K” C K’ that are finite over K
form a fundamental system of open neighborhoods of the identity element in I'. For
all these the subgroups ¢™'(Gal(K’/K")) = Gal(L/K") are open neighborhoods
of the identity element in I'. Thus ¢ is continuous at the identity element, and by
translation it is therefore continuous everywhere.

Finally, we endow I' /T with the quotient topology from I". Then since ¢ is contin-
uous, so is ¢: I'/T” = T. Conversely, for any closed subset X C I'/I" its inverse
image in I' is closed and therefore compact; so by the continuity of ¢ its image
¢(X) in T is compact and therefore closed, because I' is Hausdorff. Thus ¢! is

continuous, and therefore ¢ is a homeomorphism.



4. (The cyclotomic Z,-extension) Set Q(ppe) := J,, Q(ptpn) for a prime number p.

(a)
*(b)

Show that Q(ji,) possesses a unique subfield K, with Gal(K/Q) = Z,.

Give explicit generators for K.

Solution:

()

The natural isomorphisms Gal(Q(u,»)/Q) = (Z/p"Z)* yield an isomorphism

Gal(Q(p=)/Q) = lim Cal(Q(uy)/Q) = lim (Z/p"Z)* = 7.

n

Thus by infinite Galois theory it suffices to show that there exists a unique
closed subgroup H < Z, such that Z; J/H = Z,. But we already know that

gx _ [ -t x (L4 Zp) ifp>2,
2 o % (1+4Zy) ifp=2,

where the second factor is isomorphic to Z,. Since Z, is a torsion free abelian
group, the subgroup H must contain all torsion elements of Z; and hence
the first factor. The quotient is then isomorphic to the quotient of Z, by a
closed subgroup. But the quotient of Z, by any non-trivial closed subgroup
is finite. Therefore the only possibility for H is the first factor in the above
decomposition.

For any n > 0 the subgroup p"Z, < Z, = Gal(K+/Q) corresponds to a
unique subfield K,, C K with Gal(K,,/K) = Z/p"Z. If p is odd, then

Gal(Q(uyn+1)/Q) = (Z/p"T'Z)* = ppy x L/p"Zs

hence K, must be the fixed field of Q(f,»+1) under the subgroup p,_1. By
a theorem from Galois theory the trace map Q(um+1) — K, is surjective.
Since the p™*'-st roots of unity ¢ generate Q(u,=+1) as a Q-vector space, it
follows that K, is generated by the traces of these, namely by the elements
t(¢) = Zaeﬂp*l ¢®. Varying n we find that K, is generated by the elements
t(¢) for all p-power roots of unity (.

If p = 2, we similarly have
Gal(Q(uz)/Q) = (Z/2"°T)* = i x 22",

where the complex conjugation corresponds to the non-trivial element of 5.
By the same arguments as above, K is therefore generated by the elements
C+C¢=C(+ ¢ =2Re(¢) for all 2-power roots of unity (.



5. Let p be a prime number and Q an algebraic closure of Q.

(a)
(b)

(c)
(d)

Show that | |, extends to some absolute value | | on Q.

For any subfield K C Q which is finite over Q let K be the completion of K
with respect to the restriction of | |. Show that for any subfields K C L C Q
which are finite over () we get a natural inclusion K < L.

Show that the union @, of all these K is an algebraic closure of Q.

Show that there is a natural isomorphism

Gal(@p/(@p) — Sta“bGal(@/Q)(| -

Solution:

(a)

Let @, be any algebraic closure of @Q,. Then the p-adic absolute value on
Q, possesses a unique extension to @p. Since (@p is algebraically closed, the
embedding Q — @p extends to some embedding Q — Qp. The pullback of
the absolute value on @, under this embedding yields the desired extension.

Aliter: For any finite extension K/Q, there exists an extension of | |, to K.
Construct the desired extension to Q using Zorn’s lemma.

Any Cauchy sequence in K is also a Cauchy sequence in L, as the absolute
value on K is the restriction of the absolute value on L. Hence we obtain
an inclusion of metric spaces K < L. It follows directly from the definition
of addition and multiplication for the completion that this inclusion respects
the field structure.

The natural inclusions K < L are compatible with each other; hence we
can form the union M := lim K. Since each K is finite over QQ,, this M is
_>

algebraic over Q,. We claim that it is algebraically closed.

For this consider any finite extension K /Q,. Then K is a local field, so by
exercise 2 of sheet 19 it is the completion of a global field K at an absolute
value | |. Since Q C Q, C K, we also have Q C K so K is finite extension
of Q. Also, the restriction of | | to Q is the restriction of the usual absolute
value on Q, and hence equal to | |,.

(Aliter: Consider any irreducible monic polynomial f € Q,[X] with roots
T =11,T,...,7, € Q,. As in the solution of exercise 3 of sheet 18, we can
choose a monic polynomial g € Q[X] of degree n that is coefficientwise close
to f and has a root y in M such that |y — x| < min{|z — z;| : 2 < i < n}.
Krasner’s lemma (exercise 2 of sheet 18) then implies that Q,(z) C Q,(y).
Thus Q,(x) lies in the completion of the number field K = Q(y) at an
absolute value | | extending the p-adic absolute value on Q.)

Let L be a galois closure of K over Q. Then Gal(L/Q) acts transitively on
the set of primes of O above p and hence also on the set of extensions of
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| [, to L. Any such extension thus arises from the extension to Q in (a) via
some embedding L < Q. After extending our given absolute value | | on K
to L, this therefore arises from the extension to Q in (a) via some embedding
K < Q. For this embedding we then have K = K c M. Varying K this
proves that M is algebraically closed. In particular we have a natural equality
M = Q,.

First consider any finite extension K C Q which is galois over Q with galois
group G. Then by Proposition 9.5.6 of the lecture, the pullback of | |, via
K— Q<= @p corresponds to a prime ideal p of Ok above p, and by Prop
9.5.10 the extension K/Qp is galois with galois group G, = Stabg(p). By
the natural bijection between primes above p and extensions of the absolute
value this subgroup is equal to Stabg(| |,|x)-

For any two finite extensions K C K’ C Q that are galois over Q we have
a natural surjection Gal(K’'/Q) — Gal(K/Q). Moreover, if p C Ok and
p’ C O are the primes above p associated to the respective pullbacks of | |,,
then p’ lies above p, and by the solution of exercise 2 of sheet 2 we obtain a
natural commutative diagram with vertical surjections

R

Gal(K'/Q,) = Stabgax/o)(F) = Stabaa/o)(| blxr) < Gal(K'/Q)

| | $

Gal(K/Q,) Stabgaix/0)(P) = Stabaar/o)(| [plx) © Gal(K/Q).

1R

As K varies over all finite extensions within Q which are galois over Q, we
thus obtain compatible inverse systems. Since the union of the resulting fields
K is Q, by part (c), in the limit we obtain an isomorphism

Gal(Q,/Qp) = Stabgago) (| lple) ©Gal(Q/Q)



