Number Theory II

Solutions 20

PROFINITE GROUPS, INFINITE GALOIS THEORY

- 1. Consider a topological group G.
 - (a) Show that if G is hausdorff, then the center of G and the centralizer of any element $g \in G$ are closed subgroups.
 - (b) Show that for any continuous action of G on a topological space the stabilizer of any closed point is closed.
 - (c) Show that G is hausdorff if and only if G is T_0 . (A topological space is called T_0 if for any two distinct points, one of them possesses a neighborhood that does not contain the other.)

Solution:

- (a) If a topological space is hausdorff, then every point is closed. Since for any $g \in G$ the map $G \to G$, $h \mapsto [g,h] = ghg^{-1}h^{-1}$ is continuous, it follows that the centralizer $\operatorname{Cent}_G(g) := \{h \in H : [g,h] = 1\}$ is a closed subset. As an intersection of the closed subsets the center $Z(G) := \bigcap_{g \in G} \operatorname{Cent}_G(g)$ is then also a closed subset.
- (b) By assumption the action $G \times X \to X$ is a continuous map; hence so is the map $G \to X$, $g \mapsto gx$ for any $x \in X$. If x is a closed point, it follows that $\operatorname{Stab}_G(x) := \{g \in G : gx = x\}$ is a closed subset.
- (c) Every hausdorff space is T_0 . Conversely suppose that G is T_0 . Consider two distinct points $g, h \in G$. Suppose that $U \subset G$ is an open subset with $g \notin U \ni h$. Since inversion on G is a homeomorphism, the subset $U^{-1} :=$ $\{u^{-1} \mid u \in U\}$ is again open with $g^{-1} \notin U^{-1} \ni h^{-1}$. Since left and right translation by fixed elements of G are homeomorphisms, it follows that $gU^{-1}h$ is again open with $h = gg^{-1}h \notin gU^{-1}h \ni gh^{-1}h = g$. Thus G is T_1 . This implies that every point in G is closed. Since the map $G \times G \to G$, $(g,h) \mapsto gh^{-1}$ is continuous, it follows that the diagonal $\{(g,h) \in G \times G \mid gh^{-1} = 1\}$ is closed. But this implies that G is hausdorff.
- *2. A topological space is called *totally disconnected* if every connected subset contains only one element. Prove that a topological group is profinite if and only if it is compact and totally disconnected.

Solution: See Proposition 1.1.3 in Cohomology of Number Fields by J. Neukirch.

3. Consider a Galois extension L/K with $\Gamma := \operatorname{Gal}(L/K)$ and an intermediate field K' with $\Gamma' := \operatorname{Gal}(L/K')$. Show that K'/K is Galois if and only if $\Gamma' \triangleleft \Gamma$, and that then there is a natural isomorphism of profinite groups $\Gamma/\Gamma' \cong \operatorname{Gal}(K'/K)$.

Solution: First we claim that K'/K is Galois if and only if $\gamma(K') = K'$ for all $\gamma \in \Gamma$. To see this observe that since L/K is separable, so is K'/K. Thus K'/K is Galois if and only if it is normal. Choosing an algebraic closure \overline{L} of L, this is equivalent to saying that for every homomorphism $\sigma \colon K' \to \overline{L}$ over K we have $\sigma(K') \subset K'$. Since L/K is algebraic, any such homomorphism σ can be extended to a homomorphism $\tilde{\sigma} \colon L \to \overline{L}$ over K. Moreover, since L/K is normal, for any such $\tilde{\sigma}$ we have $\tilde{\sigma}(L) \subset L$, and since L/K is algebraic even $\tilde{\sigma}(L) = L$. Thus $\tilde{\sigma}$ induces an element $\gamma \in \text{Gal}(L/K) = \Gamma$. Together this shows that K'/K is Galois if and only if $\gamma(K') \subset K'$ for every $\gamma \in \Gamma$. Since again K'/K is algebraic, for any such γ we then even have $\gamma(K') = K'$. This proves the claim.

Next, for any elements $\gamma, \gamma' \in \Gamma$ we have

$$\gamma' \in \Gamma' \iff \gamma' | K' = \mathrm{id} \iff \gamma \gamma' \gamma^{-1} | \gamma(K') = \mathrm{id} \iff \gamma \gamma' \gamma^{-1} \in \mathrm{Gal}(L/\gamma(K')).$$

Thus for any $\gamma \in \Gamma$ we have $\operatorname{Gal}(L/\gamma(K')) = \gamma \Gamma' \gamma^{-1}$. By the bijective Galois correspondence we therefore have $\gamma(K') = K'$ if and only if $\gamma \Gamma' \gamma^{-1} = \Gamma'$. Varying γ and using the above claim it follows that K'/K is Galois if and only if $\Gamma' \triangleleft \Gamma$.

Now assume that K'/K is Galois. By the claim we then have a natural homomorphism

$$c \colon \Gamma = \operatorname{Gal}(L/K) \longrightarrow \overline{\Gamma} := \operatorname{Gal}(K'/K), \ \gamma \mapsto \gamma | K'.$$

By construction its kernel is $\operatorname{Gal}(L/K') = \Gamma'$. On the other hand, by the same argument as above any isomorphism $K' \to K'$ over K extends to an isomorphism $L \to L$ over K; so c is surjective. Together it thus induces a group isomorphism $\bar{c} \colon \Gamma/\Gamma' \xrightarrow{\sim} \bar{\Gamma}$.

Next, the subgroups $\operatorname{Gal}(K'/K'')$ for all subfields $K'' \subset K'$ that are finite over K form a fundamental system of open neighborhoods of the identity element in $\overline{\Gamma}$. For all these the subgroups $c^{-1}(\operatorname{Gal}(K'/K'')) = \operatorname{Gal}(L/K'')$ are open neighborhoods of the identity element in Γ . Thus c is continuous at the identity element, and by translation it is therefore continuous everywhere.

Finally, we endow Γ/Γ' with the quotient topology from Γ . Then since c is continuous, so is $\bar{c} \colon \Gamma/\Gamma' \xrightarrow{\sim} \bar{\Gamma}$. Conversely, for any closed subset $X \subset \Gamma/\Gamma'$ its inverse image in Γ is closed and therefore compact; so by the continuity of c its image $\bar{c}(X)$ in $\bar{\Gamma}$ is compact and therefore closed, because $\bar{\Gamma}$ is Hausdorff. Thus \bar{c}^{-1} is continuous, and therefore \bar{c} is a homeomorphism.

- 4. (The cyclotomic \mathbb{Z}_p -extension) Set $\mathbb{Q}(\mu_{p^{\infty}}) := \bigcup_n \mathbb{Q}(\mu_{p^n})$ for a prime number p.
 - (a) Show that $\mathbb{Q}(\mu_{p^{\infty}})$ possesses a unique subfield K_{∞} with $\operatorname{Gal}(K_{\infty}/\mathbb{Q}) \cong \mathbb{Z}_p$.

*(b) Give explicit generators for K_{∞} .

Solution:

(a) The natural isomorphisms $\operatorname{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q}) \cong (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ yield an isomorphism

$$\operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q}) \cong \lim_{\leftarrow n} \operatorname{Gal}(\mathbb{Q}(\mu_{p^{n}})/\mathbb{Q}) \cong \lim_{\leftarrow n} (\mathbb{Z}/p^{n}\mathbb{Z})^{\times} \cong \mathbb{Z}_{p}^{\times}$$

Thus by infinite Galois theory it suffices to show that there exists a unique closed subgroup $H < \mathbb{Z}_p^{\times}$ such that $\mathbb{Z}_p^{\times}/H \cong \mathbb{Z}_p$. But we already know that

$$\mathbb{Z}_p^{\times} = \begin{cases} \mu_{p-1} \times (1+p\mathbb{Z}_p) & \text{if } p > 2, \\ \mu_2 \times (1+4\mathbb{Z}_2) & \text{if } p = 2, \end{cases}$$

where the second factor is isomorphic to \mathbb{Z}_p . Since \mathbb{Z}_p is a torsion free abelian group, the subgroup H must contain all torsion elements of \mathbb{Z}_p^{\times} and hence the first factor. The quotient is then isomorphic to the quotient of \mathbb{Z}_p by a closed subgroup. But the quotient of \mathbb{Z}_p by any non-trivial closed subgroup is finite. Therefore the only possibility for H is the first factor in the above decomposition.

*(b) For any $n \ge 0$ the subgroup $p^n \mathbb{Z}_p < \mathbb{Z}_p \cong \operatorname{Gal}(K_\infty/\mathbb{Q})$ corresponds to a unique subfield $K_n \subset K$ with $\operatorname{Gal}(K_n/K) \cong \mathbb{Z}/p^n \mathbb{Z}$. If p is odd, then

$$\operatorname{Gal}(\mathbb{Q}(\mu_{p^{n+1}})/\mathbb{Q}) \cong (\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times} \cong \mu_{p-1} \times \mathbb{Z}/p^n\mathbb{Z};$$

hence K_n must be the fixed field of $\mathbb{Q}(\mu_{p^{n+1}})$ under the subgroup μ_{p-1} . By a theorem from Galois theory the trace map $\mathbb{Q}(\mu_{p^{n+1}}) \to K_n$ is surjective. Since the p^{n+1} -st roots of unity ζ generate $\mathbb{Q}(\mu_{p^{n+1}})$ as a \mathbb{Q} -vector space, it follows that K_n is generated by the traces of these, namely by the elements $t(\zeta) := \sum_{a \in \mu_{p-1}} \zeta^a$. Varying n we find that K_∞ is generated by the elements $t(\zeta)$ for all p-power roots of unity ζ .

If p = 2, we similarly have

$$\operatorname{Gal}(\mathbb{Q}(\mu_{2^{n+2}})/\mathbb{Q}) \cong (\mathbb{Z}/2^{n+2}\mathbb{Z})^{\times} \cong \mu_2 \times \mathbb{Z}/2^n\mathbb{Z},$$

where the complex conjugation corresponds to the non-trivial element of μ_2 . By the same arguments as above, K_{∞} is therefore generated by the elements $\zeta + \bar{\zeta} = \zeta + \zeta^{-1} = 2 \operatorname{Re}(\zeta)$ for all 2-power roots of unity ζ .

- 5. Let p be a prime number and $\overline{\mathbb{Q}}$ an algebraic closure of \mathbb{Q} .
 - (a) Show that $||_p$ extends to some absolute value || on $\overline{\mathbb{Q}}$.
 - (b) For any subfield $K \subset \overline{\mathbb{Q}}$ which is finite over \mathbb{Q} let \hat{K} be the completion of K with respect to the restriction of | |. Show that for any subfields $K \subset L \subset \overline{\mathbb{Q}}$ which are finite over \mathbb{Q} we get a natural inclusion $\hat{K} \hookrightarrow \hat{L}$.
 - (c) Show that the union $\overline{\mathbb{Q}}_p$ of all these \hat{K} is an algebraic closure of \mathbb{Q}_p .
 - (d) Show that there is a natural isomorphism

$$\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \xrightarrow{\sim} \operatorname{Stab}_{\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})}(| \ |).$$

Solution:

- (a) Let $\overline{\mathbb{Q}}_p$ be any algebraic closure of \mathbb{Q}_p . Then the *p*-adic absolute value on \mathbb{Q}_p possesses a unique extension to $\overline{\mathbb{Q}}_p$. Since $\overline{\mathbb{Q}}_p$ is algebraically closed, the embedding $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}}_p$ extends to some embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. The pullback of the absolute value on $\overline{\mathbb{Q}}_p$ under this embedding yields the desired extension. *Aliter:* For any finite extension K/\mathbb{Q} , there exists an extension of $| |_p$ to K. Construct the desired extension to $\overline{\mathbb{Q}}$ using Zorn's lemma.
- (b) Any Cauchy sequence in K is also a Cauchy sequence in L, as the absolute value on K is the restriction of the absolute value on L. Hence we obtain an inclusion of metric spaces $\hat{K} \hookrightarrow \hat{L}$. It follows directly from the definition of addition and multiplication for the completion that this inclusion respects the field structure.
- (c) The natural inclusions $\hat{K} \hookrightarrow \hat{L}$ are compatible with each other; hence we can form the union $M := \lim_{\longrightarrow} \hat{K}$. Since each \hat{K} is finite over \mathbb{Q}_p , this M is algebraic over \mathbb{Q}_p . We claim that it is algebraically closed.

For this consider any finite extension \tilde{K}/\mathbb{Q}_p . Then \tilde{K} is a local field, so by exercise 2 of sheet 19 it is the completion of a global field K at an absolute value | |. Since $\mathbb{Q} \subset \mathbb{Q}_p \subset \tilde{K}$, we also have $\mathbb{Q} \subset K$; so K is finite extension of \mathbb{Q} . Also, the restriction of | | to \mathbb{Q} is the restriction of the usual absolute value on \mathbb{Q}_p and hence equal to $| |_p$.

(Aliter: Consider any irreducible monic polynomial $f \in \mathbb{Q}_p[X]$ with roots $x = x_1, x_2, \ldots, x_n \in \overline{\mathbb{Q}}_p$. As in the solution of exercise 3 of sheet 18, we can choose a monic polynomial $g \in \mathbb{Q}[X]$ of degree n that is coefficientwise close to f and has a root y in M such that $|y - x| < \min\{|x - x_i| : 2 \leq i \leq n\}$. Krasner's lemma (exercise 2 of sheet 18) then implies that $\mathbb{Q}_p(x) \subset \mathbb{Q}_p(y)$. Thus $\mathbb{Q}_p(x)$ lies in the completion of the number field $K := \mathbb{Q}(y)$ at an absolute value | | extending the p-adic absolute value on \mathbb{Q} .)

Let L be a galois closure of K over \mathbb{Q} . Then $\operatorname{Gal}(L/\mathbb{Q})$ acts transitively on the set of primes of \mathcal{O}_L above p and hence also on the set of extensions of $| |_p$ to L. Any such extension thus arises from the extension to $\overline{\mathbb{Q}}$ in (a) via some embedding $L \hookrightarrow \overline{\mathbb{Q}}$. After extending our given absolute value | | on Kto L, this therefore arises from the extension to $\overline{\mathbb{Q}}$ in (a) via some embedding $K \hookrightarrow \overline{\mathbb{Q}}$. For this embedding we then have $\tilde{K} = \hat{K} \subset M$. Varying \tilde{K} this proves that M is algebraically closed. In particular we have a natural equality $M = \overline{\mathbb{Q}}_p$.

(d) First consider any finite extension $K \subset \overline{\mathbb{Q}}$ which is galois over \mathbb{Q} with galois group G. Then by Proposition 9.5.6 of the lecture, the pullback of $| |_p$ via $K \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ corresponds to a prime ideal \mathfrak{p} of \mathcal{O}_K above p, and by Prop 9.5.10 the extension \hat{K}/\mathbb{Q}_p is galois with galois group $G_{\mathfrak{p}} = \operatorname{Stab}_G(\mathfrak{p})$. By the natural bijection between primes above p and extensions of the absolute value this subgroup is equal to $\operatorname{Stab}_G(| |_p|_K)$.

For any two finite extensions $K \subset K' \subset \overline{\mathbb{Q}}$ that are galois over \mathbb{Q} we have a natural surjection $\operatorname{Gal}(K'/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}(K/\mathbb{Q})$. Moreover, if $\mathfrak{p} \subset \mathcal{O}_K$ and $\mathfrak{p}' \subset \mathcal{O}_{K'}$ are the primes above p associated to the respective pullbacks of $| |_p$, then \mathfrak{p}' lies above \mathfrak{p} , and by the solution of exercise 2 of sheet 2 we obtain a natural commutative diagram with vertical surjections

As K varies over all finite extensions within \mathbb{Q} which are galois over \mathbb{Q} , we thus obtain compatible inverse systems. Since the union of the resulting fields \hat{K} is $\overline{\mathbb{Q}}_p$ by part (c), in the limit we obtain an isomorphism

$$\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \cong \operatorname{Stab}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(| \ |_p|_{\overline{\mathbb{Q}}}) \subset \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$$