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Solutions 20
Profinite Groups, Infinite Galois Theory

1. Consider a topological group G.

(a) Show that if G is hausdorff, then the center of G and the centralizer of any
element g ∈ G are closed subgroups.

(b) Show that for any continuous action of G on a topological space the stabilizer
of any closed point is closed.

(c) Show that G is hausdorff if and only if G is T0. (A topological space is called
T0 if for any two distinct points, one of them possesses a neighborhood that
does not contain the other.)

Solution:

(a) If a topological space is hausdorff, then every point is closed. Since for any
g ∈ G the map G → G, h 7→ [g, h] = ghg−1h−1 is continuous, it follows that
the centralizer CentG(g) := {h ∈ H : [g, h] = 1} is a closed subset. As an
intersection of the closed subsets the center Z(G) :=

⋂
g∈G CentG(g) is then

also a closed subset.

(b) By assumption the action G×X → X is a continuous map; hence so is the
map G → X, g 7→ gx for any x ∈ X. If x is a closed point, it follows that
StabG(x) := {g ∈ G : gx = x} is a closed subset.

(c) Every hausdorff space is T0. Conversely suppose that G is T0. Consider
two distinct points g, h ∈ G. Suppose that U ⊂ G is an open subset with
g ̸∈ U ∋ h. Since inversion on G is a homeomorphism, the subset U−1 :=
{u−1 | u ∈ U} is again open with g−1 ̸∈ U−1 ∋ h−1. Since left and right
translation by fixed elements of G are homeomorphisms, it follows that gU−1h
is again open with h = gg−1h ̸∈ gU−1h ∋ gh−1h = g. Thus G is T1.

This implies that every point in G is closed. Since the map G × G → G,
(g, h) 7→ gh−1 is continuous, it follows that the diagonal {(g, h) ∈ G × G |
gh−1 = 1} is closed. But this implies that G is hausdorff.

*2. A topological space is called totally disconnected if every connected subset contains
only one element. Prove that a topological group is profinite if and only if it is
compact and totally disconnected.

Solution: See Proposition 1.1.3 in Cohomology of Number Fields by J. Neukirch.

1



3. Consider a Galois extension L/K with Γ := Gal(L/K) and an intermediate field
K ′ with Γ′ := Gal(L/K ′). Show that K ′/K is Galois if and only if Γ′ ◁Γ, and that
then there is a natural isomorphism of profinite groups Γ/Γ′ ∼= Gal(K ′/K).

Solution: First we claim that K ′/K is Galois if and only if γ(K ′) = K ′ for all
γ ∈ Γ. To see this observe that since L/K is separable, so is K ′/K. Thus K ′/K
is Galois if and only if it is normal. Choosing an algebraic closure L̄ of L, this
is equivalent to saying that for every homomorphism σ : K ′ → L̄ over K we have
σ(K ′) ⊂ K ′. Since L/K is algebraic, any such homomorphism σ can be extended
to a homomorphism σ̃ : L → L̄ over K. Moreover, since L/K is normal, for any
such σ̃ we have σ̃(L) ⊂ L, and since L/K is algebraic even σ̃(L) = L. Thus σ̃
induces an element γ ∈ Gal(L/K) = Γ. Together this shows that K ′/K is Galois
if and only if γ(K ′) ⊂ K ′ for every γ ∈ Γ. Since again K ′/K is algebraic, for any
such γ we then even have γ(K ′) = K ′. This proves the claim.

Next, for any elements γ, γ′ ∈ Γ we have

γ′ ∈ Γ′ ⇐⇒ γ′|K ′ = id ⇐⇒ γγ′γ−1|γ(K ′) = id ⇐⇒ γγ′γ−1 ∈ Gal(L/γ(K ′)).

Thus for any γ ∈ Γ we have Gal(L/γ(K ′)) = γΓ′γ−1. By the bijective Galois
correspondence we therefore have γ(K ′) = K ′ if and only if γΓ′γ−1 = Γ′. Varying
γ and using the above claim it follows that K ′/K is Galois if and only if Γ′ ◁ Γ.

Now assume that K ′/K is Galois. By the claim we then have a natural homomor-
phism

c : Γ = Gal(L/K) −→ Γ̄ := Gal(K ′/K), γ 7→ γ|K ′.

By construction its kernel is Gal(L/K ′) = Γ′. On the other hand, by the same
argument as above any isomorphism K ′ → K ′ over K extends to an isomorphism
L → L over K; so c is surjective. Together it thus induces a group isomorphism
c̄ : Γ/Γ′

∼−→ Γ̄.

Next, the subgroups Gal(K ′/K ′′) for all subfields K ′′ ⊂ K ′ that are finite over K
form a fundamental system of open neighborhoods of the identity element in Γ̄. For
all these the subgroups c−1(Gal(K ′/K ′′)) = Gal(L/K ′′) are open neighborhoods
of the identity element in Γ. Thus c is continuous at the identity element, and by
translation it is therefore continuous everywhere.

Finally, we endow Γ/Γ′ with the quotient topology from Γ. Then since c is contin-
uous, so is c̄ : Γ/Γ′

∼−→ Γ̄. Conversely, for any closed subset X ⊂ Γ/Γ′ its inverse
image in Γ is closed and therefore compact; so by the continuity of c its image
c̄(X) in Γ̄ is compact and therefore closed, because Γ̄ is Hausdorff. Thus c̄−1 is
continuous, and therefore c̄ is a homeomorphism.
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4. (The cyclotomic Zp-extension) Set Q(µp∞) :=
⋃

nQ(µpn) for a prime number p.

(a) Show that Q(µp∞) possesses a unique subfield K∞ with Gal(K∞/Q) ∼= Zp.

*(b) Give explicit generators for K∞.

Solution:

(a) The natural isomorphisms Gal(Q(µpn)/Q) ∼= (Z/pnZ)× yield an isomorphism

Gal(Q(µp∞)/Q) ∼= lim
←−
n

Gal(Q(µpn)/Q) ∼= lim
←−
n

(Z/pnZ)× ∼= Z×p .

Thus by infinite Galois theory it suffices to show that there exists a unique
closed subgroup H < Z×p such that Z×p /H ∼= Zp. But we already know that

Z×p =

{
µp−1 × (1 + pZp) if p > 2,

µ2 × (1 + 4Z2) if p = 2,

where the second factor is isomorphic to Zp. Since Zp is a torsion free abelian
group, the subgroup H must contain all torsion elements of Z×p and hence
the first factor. The quotient is then isomorphic to the quotient of Zp by a
closed subgroup. But the quotient of Zp by any non-trivial closed subgroup
is finite. Therefore the only possibility for H is the first factor in the above
decomposition.

*(b) For any n ⩾ 0 the subgroup pnZp < Zp
∼= Gal(K∞/Q) corresponds to a

unique subfield Kn ⊂ K with Gal(Kn/K) ∼= Z/pnZ. If p is odd, then

Gal(Q(µpn+1)/Q) ∼= (Z/pn+1Z)× ∼= µp−1 × Z/pnZ;

hence Kn must be the fixed field of Q(µpn+1) under the subgroup µp−1. By
a theorem from Galois theory the trace map Q(µpn+1) → Kn is surjective.
Since the pn+1-st roots of unity ζ generate Q(µpn+1) as a Q-vector space, it
follows that Kn is generated by the traces of these, namely by the elements
t(ζ) :=

∑
a∈µp−1

ζa. Varying n we find that K∞ is generated by the elements

t(ζ) for all p-power roots of unity ζ.

If p = 2, we similarly have

Gal(Q(µ2n+2)/Q) ∼= (Z/2n+2Z)× ∼= µ2 × Z/2nZ,

where the complex conjugation corresponds to the non-trivial element of µ2.
By the same arguments as above, K∞ is therefore generated by the elements
ζ + ζ̄ = ζ + ζ−1 = 2Re(ζ) for all 2-power roots of unity ζ.
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5. Let p be a prime number and Q̄ an algebraic closure of Q.

(a) Show that | |p extends to some absolute value | | on Q̄.

(b) For any subfield K ⊂ Q̄ which is finite over Q let K̂ be the completion of K
with respect to the restriction of | |. Show that for any subfields K ⊂ L ⊂ Q̄
which are finite over Q we get a natural inclusion K̂ ↪→ L̂.

(c) Show that the union Q̄p of all these K̂ is an algebraic closure of Qp.

(d) Show that there is a natural isomorphism

Gal(Q̄p/Qp)
∼−→ StabGal(Q̄/Q)(| |).

Solution:

(a) Let Q̄p be any algebraic closure of Qp. Then the p-adic absolute value on
Qp possesses a unique extension to Q̄p. Since Q̄p is algebraically closed, the
embedding Q ↪→ Q̄p extends to some embedding Q̄ ↪→ Q̄p. The pullback of
the absolute value on Q̄p under this embedding yields the desired extension.

Aliter: For any finite extension K/Q, there exists an extension of | |p to K.
Construct the desired extension to Q̄ using Zorn’s lemma.

(b) Any Cauchy sequence in K is also a Cauchy sequence in L, as the absolute
value on K is the restriction of the absolute value on L. Hence we obtain
an inclusion of metric spaces K̂ ↪→ L̂. It follows directly from the definition
of addition and multiplication for the completion that this inclusion respects
the field structure.

(c) The natural inclusions K̂ ↪→ L̂ are compatible with each other; hence we
can form the union M := lim

−→
K̂. Since each K̂ is finite over Qp, this M is

algebraic over Qp. We claim that it is algebraically closed.

For this consider any finite extension K̃/Qp. Then K̃ is a local field, so by
exercise 2 of sheet 19 it is the completion of a global field K at an absolute
value | |. Since Q ⊂ Qp ⊂ K̃, we also have Q ⊂ K; so K is finite extension
of Q. Also, the restriction of | | to Q is the restriction of the usual absolute
value on Qp and hence equal to | |p.
(Aliter: Consider any irreducible monic polynomial f ∈ Qp[X] with roots
x = x1, x2, . . . , xn ∈ Q̄p. As in the solution of exercise 3 of sheet 18, we can
choose a monic polynomial g ∈ Q[X] of degree n that is coefficientwise close
to f and has a root y in M such that |y − x| < min{|x − xi| : 2 ⩽ i ⩽ n}.
Krasner’s lemma (exercise 2 of sheet 18) then implies that Qp(x) ⊂ Qp(y).
Thus Qp(x) lies in the completion of the number field K := Q(y) at an
absolute value | | extending the p-adic absolute value on Q.)

Let L be a galois closure of K over Q. Then Gal(L/Q) acts transitively on
the set of primes of OL above p and hence also on the set of extensions of
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| |p to L. Any such extension thus arises from the extension to Q̄ in (a) via
some embedding L ↪→ Q̄. After extending our given absolute value | | on K
to L, this therefore arises from the extension to Q̄ in (a) via some embedding
K ↪→ Q̄. For this embedding we then have K̃ = K̂ ⊂ M . Varying K̃ this
proves thatM is algebraically closed. In particular we have a natural equality
M = Q̄p.

(d) First consider any finite extension K ⊂ Q̄ which is galois over Q with galois
group G. Then by Proposition 9.5.6 of the lecture, the pullback of | |p via
K ↪→ Q̄ ↪→ Q̄p corresponds to a prime ideal p of OK above p, and by Prop

9.5.10 the extension K̂/Qp is galois with galois group Gp = StabG(p). By
the natural bijection between primes above p and extensions of the absolute
value this subgroup is equal to StabG(| |p|K).
For any two finite extensions K ⊂ K ′ ⊂ Q̄ that are galois over Q we have
a natural surjection Gal(K ′/Q) ↠ Gal(K/Q). Moreover, if p ⊂ OK and
p′ ⊂ OK′ are the primes above p associated to the respective pullbacks of | |p,
then p′ lies above p, and by the solution of exercise 2 of sheet 2 we obtain a
natural commutative diagram with vertical surjections

Gal(K̂ ′/Qp) ∼=

����

StabGal(K′/Q)(p
′) =

����

StabGal(K′/Q)(| |p|K′) ⊂

����

Gal(K ′/Q)

����
Gal(K̂/Qp) ∼= StabGal(K/Q)(p) = StabGal(K/Q)(| |p|K) ⊂ Gal(K/Q).

As K varies over all finite extensions within Q̄ which are galois over Q, we
thus obtain compatible inverse systems. Since the union of the resulting fields
K̂ is Q̄p by part (c), in the limit we obtain an isomorphism

Gal(Q̄p/Qp) ∼= StabGal(Q̄/Q)(| |p|Q̄) ⊂Gal(Q̄/Q)
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