Number Theory II

Exercise sheet 21

STRUCTURE OF LOCAL FIELDS, UNRAMIFIED AND TAME EXTENSIONS

- 1. Let K be a nonarchimedean local field of characteristic p > 0 with valuation ring \mathcal{O} and maximal ideal \mathfrak{m} . Show that the subgroup $U_1 := \{x \in \mathcal{O}^{\times} \mid x \equiv 1 \mod \mathfrak{m}\}$ is topologically isomorphic to a countably infinite product of copies of \mathbb{Z}_p .
- 2. Let $\mathbb{Q}_p^{\operatorname{nr}}$ be the union of all finite unramified extensions of \mathbb{Q}_p . Since this is an algebraic extension of \mathbb{Q}_p , the valuation ord_p on \mathbb{Q}_p extends uniquely to a valuation on $\mathbb{Q}_p^{\operatorname{nr}}$. Show that this extension is not complete.
- 3. Let L be an algebraic extension of a nonarchimedean local field K.
 - (a) Show that there is a maximal intermediate field M that is unramified over K.
 - (b) Show that the residue field extension of M/L is trivial.
- 4. Show that every finite extension of $\mathbb{C}((t))$ has the form $\mathbb{C}((\sqrt[n]{t}))$ for some $n \ge 1$.