Prof. Richard Pink

D-MATH

Solutions 21

STRUCTURE OF LOCAL FIELDS, UNRAMIFIED AND TAME EXTENSIONS

1. Let K be a nonarchimedean local field of characteristic p > 0 with valuation ring \mathcal{O} and maximal ideal \mathfrak{m} . Show that the subgroup $U_1 := \{x \in \mathcal{O}^{\times} \mid x \equiv 1 \mod \mathfrak{m}\}$ is topologically isomorphic to a countably infinite product of copies of \mathbb{Z}_p .

Solution Choose a uniformizer $\pi \in \mathcal{O}$ and a basis $\alpha_1, \ldots, \alpha_n$ of the residue field \mathcal{O}/\mathfrak{m} over \mathbb{F}_p . We claim that we have a topological isomorphism

$$\underset{i=1}{\overset{n}{\underset{p\nmid j>0}{\times}}} \underset{p \nmid j>0}{\overset{\sim}{\longrightarrow}} U_1, \quad (m_{i,j})_{i,j} \mapsto \prod_{i=1}^{n} \prod_{p \nmid j>0} (1 + \alpha_i \pi^j)^{m_{i,j}}$$

For this note first that for any $k \ge 0$, all but finitely many factors on the right hand side are $\equiv 1 \mod \mathfrak{m}^k$. Thus the product is well-defined. Moreover, by the binomial series (compare exercise 5 of sheet 16) the map is a continuous homomorphism in each factor \mathbb{Z}_p . Thus altogether it is a continuous homomorphism. Once we have proved that it is bijective, being a continuous bijection between compact Hausdorff spaces it is then a homeomorphism and therefore a topological group isomorphism.

To prove the bijectivity, for any integer m > 0 consider the subgroup

$$U_m := \{ x \in \mathcal{O}^{\times} \mid x \equiv 1 \bmod \mathfrak{m}^m \}.$$

We set $I := \{0, 1, \dots, p-1\}$ and note that $I^{\mathbb{N}} \to \mathbb{Z}_p, (b_k)_{\nu} \mapsto \sum_{k=0}^{\infty} b_k p^k$ is bijective. Thus it suffices to show that the map

$$\underset{i=1}{\overset{n}{\underset{p \nmid j>0}{\times}}} \underset{k=0}{\overset{\infty}{\underset{k=0}{\times}}} I \longrightarrow U_1, \quad (b_{i,j,k})_{i,j,k} \mapsto \prod_{i=1}^{n} \prod_{p \nmid j>0} \prod_{k=0}^{\infty} (1 + \alpha_i \pi^j)^{b_{i,j,k}p^k}$$

is bijective. In this product $m := jp^k$ runs through all positive integers, and for fixed $m = jp^k$ we have

$$\prod_{i=1}^{n} (1 + \alpha_{i} \pi^{j})^{b_{i,j,k}p^{k}} = \prod_{i=1}^{n} (1 + \alpha_{i}^{p^{k}} \pi^{jp^{k}})^{b_{i,j,k}} \equiv 1 + \left(\sum_{i=1}^{n} \alpha_{i}^{p^{k}} b_{i,j,k}\right) \cdot \pi^{m} \mod \mathfrak{m}^{m+1}.$$

Here the $\alpha_i^{p^k}$ for $1 \leq i \leq n$ again form a basis of \mathcal{O}/\mathfrak{m} over \mathbb{F}_p ; hence the value of the big parenthesis on the right hand side runs through all elements of \mathcal{O}/\mathfrak{m} as $(b_{i,j,k})_i$ varies over $\bigotimes_{i=1}^n I$. The total value thus runs through a system of representatives of U_m/U_{m+1} . By induction on m we can thus deduce that

$$\underset{i=1}{\overset{n}{\underset{k\geq 0}{\underset{jp^k\leqslant m}{\times}}}} X \longrightarrow U_1/U_{m+1}, \quad (b_{i,j,k})_{i,j,k} \mapsto \prod_{i=1}^{n} \prod_{p \nmid j>0 \atop k\geq 0 \atop jp^k\leqslant m} (1+\alpha_i \pi^j)^{b_{i,j,k}p^k}$$

is bijective for every $m \ge 0$. Taking the limit over m we find the desired bijectivity.

2. Let $\mathbb{Q}_p^{\operatorname{nr}}$ be the union of all finite unramified extensions of \mathbb{Q}_p . Since this is an algebraic extension of \mathbb{Q}_p , the valuation ord_p on \mathbb{Q}_p extends uniquely to a valuation on $\mathbb{Q}_p^{\operatorname{nr}}$. Show that this extension is not complete.

Solution: Choose a prime $\ell \neq p$ and primitive ℓ^n -th roots of unity $\zeta_n \in \overline{\mathbb{Q}}_p$ such that $\zeta_{n+1}^{\ell} = \zeta_n$ for all $n \ge 0$. Then each ζ_n is a root of the monic polynomial $X^{\ell^n} - 1 \in \mathbb{Z}_p[X]$, which is separable modulo (p). Thus $\zeta_n \in \mathbb{Q}_p^{\mathrm{nr}}$.

Now suppose that $\mathbb{Q}_p^{\mathrm{nr}}$ is complete. Then $\mathbb{Q}_p^{\mathrm{nr}}$ contains the element

$$\xi := \sum_{n \ge 0} \zeta_n p^n.$$

In other words $K := \mathbb{Q}_p(\xi)$ is a finite unramified extension of \mathbb{Q}_p , say of degree d. Its residue field then has order p^d . Let ℓ^m be the maximal power of ℓ that divides $p^d - 1$. Then K contains all ℓ^m -th roots of unity of $\overline{\mathbb{Q}}_p$, but no primitive ℓ^{m+1} -th root of unity. In particular K contains ζ_n for all $n \leq m$ and therefore also the element

$$\xi_m := \left(\xi - \sum_{n=0}^m \zeta_n p^n\right) / p^{m+1} = \sum_{n \ge 0} \zeta_{n+m+1} p^n.$$

Its residue field thus contains the residue class ζ_{m+1} of ξ_m , which is a primitive ℓ^{m+1} -th root of unity. This is a contradiction; hence $\mathbb{Q}_p^{\mathrm{nr}}$ is not complete.

- 3. Let L be an algebraic extension of a nonarchimedean local field K.
 - (a) Show that there is a maximal intermediate field M that is unramified over K.
 - (b) Show that the residue field extension of M/L is trivial.

Solution: See [Neukirch, Ch.II Prop.7.5.]

4. Show that every finite extension of $\mathbb{C}((t))$ has the form $\mathbb{C}((\sqrt[n]{t}))$ for some $n \ge 1$. Solution: Direct adaptation of the proof of Proposition 11.3.3 of the lecture.