Solutions 21

Structure of Local Fields, Unramified and Tame Extensions

1. Let K be a nonarchimedean local field of characteristic $p>0$ with valuation ring \mathcal{O} and maximal ideal \mathfrak{m}. Show that the subgroup $U_{1}:=\left\{x \in \mathcal{O}^{\times} \mid x \equiv 1 \bmod \mathfrak{m}\right\}$ is topologically isomorphic to a countably infinite product of copies of \mathbb{Z}_{p}.
Solution Choose a uniformizer $\pi \in \mathcal{O}$ and a basis $\alpha_{1}, \ldots, \alpha_{n}$ of the residue field $\mathcal{O} / \mathfrak{m}$ over \mathbb{F}_{p}. We claim that we have a topological isomorphism

$$
\underset{i=1}{\times} \underset{p \nmid j>0}{X} \mathbb{Z}_{p} \xrightarrow{\sim} U_{1}, \quad\left(m_{i, j}\right)_{i, j} \mapsto \prod_{i=1}^{n} \prod_{p \nmid j>0}\left(1+\alpha_{i} \pi^{j}\right)^{m_{i, j}}
$$

For this note first that for any $k \geqslant 0$, all but finitely many factors on the right hand side are $\equiv 1 \bmod \mathfrak{m}^{k}$. Thus the product is well-defined. Moreover, by the binomial series (compare exercise 5 of sheet 16) the map is a continuous homomorphism in each factor \mathbb{Z}_{p}. Thus altogether it is a continuous homomorphism. Once we have proved that it is bijective, being a continuous bijection between compact Hausdorff spaces it is then a homeomorphism and therefore a topological group isomorphism.

To prove the bijectivity, for any integer $m>0$ consider the subgroup

$$
U_{m}:=\left\{x \in \mathcal{O}^{\times} \mid x \equiv 1 \bmod \mathfrak{m}^{m}\right\} .
$$

We set $I:=\{0,1, \ldots, p-1\}$ and note that $I^{\mathbb{N}} \rightarrow \mathbb{Z}_{p},\left(b_{k}\right)_{\nu} \mapsto \sum_{k=0}^{\infty} b_{k} p^{k}$ is bijective. Thus it suffices to show that the map
is bijective. In this product $m:=j p^{k}$ runs through all positive integers, and for fixed $m=j p^{k}$ we have

$$
\prod_{i=1}^{n}\left(1+\alpha_{i} \pi^{j}\right)^{b_{i, j, k} p^{k}}=\prod_{i=1}^{n}\left(1+\alpha_{i}^{p^{k}} \pi^{j p^{k}}\right)^{b_{i, j, k}} \equiv 1+\left(\sum_{i=1}^{n} \alpha_{i}^{p^{k}} b_{i, j, k}\right) \cdot \pi^{m} \bmod \mathfrak{m}^{m+1}
$$

Here the $\alpha_{i}^{p^{k}}$ for $1 \leqslant i \leqslant n$ again form a basis of $\mathcal{O} / \mathfrak{m}$ over \mathbb{F}_{p}; hence the value of the big parenthesis on the right hand side runs through all elements of $\mathcal{O} / \mathfrak{m}$ as $\left(b_{i, j, k}\right)_{i}$ varies over $X_{i=1}^{n} I$. The total value thus runs through a system of representatives of U_{m} / U_{m+1}. By induction on m we can thus deduce that

$$
\underset{\substack{i=1 \\ i=1 \\ \underset{c}{p \ggg 0} \\ j p^{k} \leqslant m}}{\times} I \longrightarrow U_{1} / U_{m+1}, \quad\left(b_{i, j, k}\right)_{i, j, k} \mapsto \prod_{i=1}^{n} \prod_{\substack{p \nmid \gg 0 \\ k \geqslant 0 \\ j p^{k} \leqslant m}}\left(1+\alpha_{i} \pi^{j}\right)^{b_{i, j, k} p^{k}}
$$

is bijective for every $m \geqslant 0$. Taking the limit over m we find the desired bijectivity.
2. Let $\mathbb{Q}_{p}^{\mathrm{nr}}$ be the union of all finite unramified extensions of \mathbb{Q}_{p}. Since this is an algebraic extension of \mathbb{Q}_{p}, the valuation ord ${ }_{p}$ on \mathbb{Q}_{p} extends uniquely to a valuation on $\mathbb{Q}_{p}^{\mathrm{nr}}$. Show that this extension is not complete.
Solution: Choose a prime $\ell \neq p$ and primitive ℓ^{n}-th roots of unity $\zeta_{n} \in \overline{\mathbb{Q}}_{p}$ such that $\zeta_{n+1}^{\ell}=\zeta_{n}$ for all $n \geqslant 0$. Then each ζ_{n} is a root of the monic polynomial $X^{\ell^{n}}-1 \in \mathbb{Z}_{p}[X]$, which is separable modulo (p). Thus $\zeta_{n} \in \mathbb{Q}_{p}^{\mathrm{nr}}$.
Now suppose that $\mathbb{Q}_{p}^{\mathrm{nr}}$ is complete. Then $\mathbb{Q}_{p}^{\mathrm{nr}}$ contains the element

$$
\xi:=\sum_{n \geqslant 0} \zeta_{n} p^{n} .
$$

In other words $K:=\mathbb{Q}_{p}(\xi)$ is a finite unramified extension of \mathbb{Q}_{p}, say of degree d. Its residue field then has order p^{d}. Let ℓ^{m} be the maximal power of ℓ that divides $p^{d}-1$. Then K contains all ℓ^{m}-th roots of unity of $\overline{\mathbb{Q}}_{p}$, but no primitive ℓ^{m+1}-th root of unity. In particular K contains ζ_{n} for all $n \leqslant m$ and therefore also the element

$$
\xi_{m}:=\left(\xi-\sum_{n=0}^{m} \zeta_{n} p^{n}\right) / p^{m+1}=\sum_{n \geqslant 0} \zeta_{n+m+1} p^{n} .
$$

Its residue field thus contains the residue class ζ_{m+1} of ξ_{m}, which is a primitive ℓ^{m+1}-th root of unity. This is a contradiction; hence $\mathbb{Q}_{p}^{\text {nr }}$ is not complete.
3. Let L be an algebraic extension of a nonarchimedean local field K.
(a) Show that there is a maximal intermediate field M that is unramified over K.
(b) Show that the residue field extension of M / L is trivial.

Solution: See [Neukirch, Ch.II Prop.7.5.]
4. Show that every finite extension of $\mathbb{C}((t))$ has the form $\mathbb{C}((\sqrt[n]{t}))$ for some $n \geqslant 1$.

Solution: Direct adaptation of the proof of Proposition 11.3.3 of the lecture.

