Number Theory II

Exercise sheet 22

TAME AND WILD EXTENSIONS, RAMIFICATION FILTRATION

- 1. Let K be a non-archimedean local field of characteristic p > 0. Show that for any integer $n \ge 0$, up to isomorphism there exists a unique totally inseparable extension of K of degree p^n .
- 2. Let K be a non-archimedean local field. Show that the maximal tame abelian extension K^{atr} of K is finite over the maximal unramified extension K^{nr} of K.
- 3. Let K be a non-archimedean local field of characteristic p > 0. Show that for every integer $s \ge 0$ that is not divisible by p there exists a cyclic extensions L/Kwith Galois group $\Gamma \cong \mathbb{F}_p$, for which $\Gamma_s = \Gamma$ and $\Gamma_{s+1} = 0$.

(*Hint*: Study polynomials of the form $X^p - X - a$ with v(a) < 0.)

- 4. In the situation of the preceding exercise, what happens with polynomials of the form $X^p X a$ with $v(a) \ge 0$?
- 5. Show that a local field of characteristic zero possesses only finitely many extensions of any fixed degree, up to isomorphism.