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Prof. Richard Pink

Solutions 22

Tame and Wild Extensions, Ramification Filtration

1. Let K be a non-archimedean local field of characteristic p > 0. Show that for
any integer n ⩾ 0, up to isomorphism there exists a unique totally inseparable
extension of K of degree pn.

Solution By induction it suffices to prove the statement for n = 1. So let L/K
be purely inseparable of degree p. Set φ(x) := xp for any x ∈ L. Then φ(L) is
contained in K and contains the subfield φ(K). Thus φ(L) is an intermediate
field of the extension K/φ(K). To understand this extension, using Proposition
11.1.4 of the lecture we may without loss of generality assume that K = k((u))
for a finite field k of characteristic p. Thus φ(K) = k((v)) for v := up. Since
u ∈ K is a root of the polynomial Xp − v ∈ φ(K)[X], which is irreducible by the
Eisenstein criterion for the maximal ideal (v) ⊂ k[[v]], we see that K/φ(K) has
degree p. Since φ(L) ⊂ K is itself of degree p over φ(K), we must therefore have
φ(L) = K. But this now means that L = k(( p

√
u)) is uniquely determined up to

isomorphism over K. Conversely, since K/φ(K) is purely inseparable of degree p,
the same holds for the extension k(( p

√
u))/K. This proves the existence, and we

are done.

2. Let K be a non-archimedean local field. Show that the maximal tame abelian
extension Katr of K is finite over the maximal unramified extension Knr of K.

Solution By Proposition 11.3.6 of the lecture the maximal tame extension Ktr/K
is Galois over K and contains Knr. By the Galois correspondence the subfield Katr

corresponds to the maximal closed normal subgroup ∆ of Γ := Gal(Ktr/K) whose
factor group is abelian. Thus ∆ is the closure of the commutator subgroup of Γ. As
Knr is abelian over K, we have Knr ⊂ Katr and therefore ∆ < Γ′ := Gal(Ktr/Knr).

Now recall from Proposition 11.3.7 that Γ ∼= Ẑ ⋉ Γ′ and

Γ′ ∼= Ẑ(p)(1) := lim
←−
p∤n

µn(k̄),

on which 1 ∈ Ẑ acts by the map x 7→ xq for q := |k|. Taking the commutator of
1 ∈ Ẑ with an element of Γ′ thus corresponds to the map x 7→ xq−1. Under the
(non-canonical) isomorphism

Γ′ ∼= Ẑ(p)(1) ∼= Ẑ(p) ∼=
∏
ℓ ̸=p

Zp
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this map corresponds to the map y 7→ (q− 1) · y. Thus the commutator subgroup
∆ corresponds to the subgroup (q − 1)Ẑ(p) of Ẑ(p). Since q − 1 is already coprime
to p, the group Ẑ(p)/(q − 1)Ẑ(p) ∼= Z/(q − 1)Z is finite of order q − 1. Thus Γ′/∆
is finite of order q − 1, and hence Katr/Knr is finite (and cyclic) of degree q − 1.

3. Let K be a non-archimedean local field of characteristic p > 0. Show that for
every integer s ⩾ 0 that is not divisible by p there exists a cyclic extensions L/K
with Galois group Γ ∼= Fp, for which Γs = Γ and Γs+1 = 0.

(Hint: Study polynomials of the form Xp −X − a with v(a) < 0.)

Solution First we recall Artin-Schreier theory, for instance from exercise 3 of
series 22 of Algebra II in Spring 2023: Consider a polynomial of the form f(X) =
Xp−X−a for some a ∈ K. Then if f does not have a zero on K, any root b ∈ K̄
of f generates a cyclic extension of K and Gal(L/K) ∼= Fp acts by b 7→ b + α for
all α ∈ Fp. (In fact, every cyclic extension of degree p of any field of characteristic
p can be constructed in this way.)

Returning to our situation, we choose an isomorphism K ∼= k((u)) with a finite
field k of characteristic p. Let v denote the extension to K̄ of the normalized
valuation on K. Let b ∈ K̄ be a root of the polynomial Xp − X − u−s. Since
the Newton polygon of this polynomial is a straight line segment of slope s

p
, we

then have v(b) = − s
p
. As this is not an integer, we conclude that b ̸∈ K. Thus

L := K(b) is a cyclic Galois extension of K with Galois group Γ ∼= Fp.

Now choose integers i and j such that ip − js = 1. After replacing (i, j) by
(i + ms, j + mp) for m ≫ 0 we may assume that j > 0. Consider the element
π = uibj ∈ L. Then v(uibj) = i · 1 − j s

p
= 1

p
; hence π is a uniformizer of L. Also

any non-trivial element γ ∈ Gal(L/K) acts by

π = uibj 7→ γπ = ui(b+ α)j = (1 + αb−1)juibj

=
(∑j

ν=0

(
j
ν

)
ανb−ν

)
π

≡ π + jαb−1π mod (b−2π)

for some α ∈ F×p . Here ip− js = 1 implies that p ∤ j and hence

v(jαb−1π) = −v(b) + v(π) = s+1
p

< 2s+1
p

= v(b−2π).

Therefore v(γπ − π) = s+1
p
. For the normalized valuation vL on L this means

that vL(
γπ − π) = s+ 1. By the definition of the lower numbering subgroups this

shows that γ ̸∈ Γs+1; hence Γs+1 = {0}. On the other hand, since L/K is totally
ramified and π is a uniformizer of L, the valuation ring of L is k[[π]]. Moreover
vL(

γπ − π) = s+ 1 implies that vL(
γc− c) ⩾ s+ 1 for all elements c ∈ k[[π]]. By

the definition of the lower numbering subgroups we therefore have γ ∈ Γs; hence
Γs = Γ.
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4. In the situation of the preceding exercise, what happens with polynomials of the
form Xp −X − a with v(a) ⩾ 0?

Solution In this case the polynomial has coefficients in the valuation ring and its
reduction modulo the maximal polynomial is separable. Therefore the extension
generated by a root of this polynomial is unramified.

5. Show that a local field of characteristic zero possesses only finitely many extensions
of any fixed degree, up to isomorphism.

Solution This is clear for K ∼= R,C, because its algebraic closure is finite over it.
So let K be a finite extension of Qp for p > 0.

Let L/K be an extension of degree n. Then its normal closure L̃/K has degree
⩽ n!. Also char(K) = 0 implies that L̃/K is separable; so it possesses only finitely
many intermediate fields. Thus it suffices to prove the desired statement for Galois
extensions.

If L/K is Galois, its Galois group is solvable. Thus there exist intermediate fields
L = Kd/ . . . /K1/K0 = K such that each Ki/Ki−1 is Galois of prime degree. By
induction it therefore suffices to prove the desired statement for cyclic extensions
of prime degree.

So let L/K be cyclic of prime degree ℓ. Set K ′ := K(µℓ) and L′ := LK ′. Since
[K ′/K] ⩽ ℓ − 1, by Galois theory the extension L′/K ′ is then again cyclic of
degree ℓ. Since L′/K possesses only finitely many intermediate fields, it thus
suffices to prove the statement for L′/K ′ instead of L/K. In other words we may
suppose that µℓ ⊂ K.

Then by Kummer theory we have L = K( ℓ
√
a) for some a ∈ K×. Moreover, we

have K( ℓ
√
a) = K( ℓ

√
b) for any b ∈ K× for which b/a is an ℓ-th power. Thus the

isomorphism class of L/K is determined by the residue class of a in the group
K×/(K×)ℓ. But by Proposition 11.1.6 we have K× ∼= Z × µK × Zn

p with µK

finite. Thus
K×/(K×)ℓ ∼= Z/ℓZ× µK/µ

ℓ
K × Zn

p/ℓZn
p .

As each factor on the right hand side is finite, it follows that K×/(K×)ℓ is finite.
Thus there are only finitely many possibilities for L/K up to isomorphism, as
desired.

(Aliter: One can treat unramified and tame extensions separately, for instance
using the explicit description of Gal(Ktr/K) from Proposition 11.3.7. But for
ramified cyclic extensions of degree p one still needs to use the Kummer theory
argument above.)

(Aliter: See [Lang: Algebraic Number Theory, Ch.II §5 Proposition 14].)
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