D-MATH
Prof. Richard Pink

## Solutions 22

Tame and Wild Extensions, Ramification Filtration

1. Let $K$ be a non-archimedean local field of characteristic $p>0$. Show that for any integer $n \geqslant 0$, up to isomorphism there exists a unique totally inseparable extension of $K$ of degree $p^{n}$.
Solution By induction it suffices to prove the statement for $n=1$. So let $L / K$ be purely inseparable of degree $p$. Set $\varphi(x):=x^{p}$ for any $x \in L$. Then $\varphi(L)$ is contained in $K$ and contains the subfield $\varphi(K)$. Thus $\varphi(L)$ is an intermediate field of the extension $K / \varphi(K)$. To understand this extension, using Proposition 11.1.4 of the lecture we may without loss of generality assume that $K=k((u))$ for a finite field $k$ of characteristic $p$. Thus $\varphi(K)=k((v))$ for $v:=u^{p}$. Since $u \in K$ is a root of the polynomial $X^{p}-v \in \varphi(K)[X]$, which is irreducible by the Eisenstein criterion for the maximal ideal $(v) \subset k[[v]]$, we see that $K / \varphi(K)$ has degree $p$. Since $\varphi(L) \subset K$ is itself of degree $p$ over $\varphi(K)$, we must therefore have $\varphi(L)=K$. But this now means that $L=k((\sqrt[p]{u}))$ is uniquely determined up to isomorphism over $K$. Conversely, since $K / \varphi(K)$ is purely inseparable of degree $p$, the same holds for the extension $k((\sqrt[p]{u})) / K$. This proves the existence, and we are done.
2. Let $K$ be a non-archimedean local field. Show that the maximal tame abelian extension $K^{\text {atr }}$ of $K$ is finite over the maximal unramified extension $K^{\mathrm{nr}}$ of $K$.
Solution By Proposition 11.3.6 of the lecture the maximal tame extension $K^{\operatorname{tr}} / K$ is Galois over $K$ and contains $K^{\text {nr }}$. By the Galois correspondence the subfield $K^{\text {atr }}$ corresponds to the maximal closed normal subgroup $\Delta$ of $\Gamma:=\operatorname{Gal}\left(K^{\operatorname{tr}} / K\right)$ whose factor group is abelian. Thus $\Delta$ is the closure of the commutator subgroup of $\Gamma$. As $K^{\mathrm{nr}}$ is abelian over $K$, we have $K^{\mathrm{nr}} \subset K^{\mathrm{atr}}$ and therefore $\Delta<\Gamma^{\prime}:=\operatorname{Gal}\left(K^{\mathrm{tr}} / K^{\mathrm{nr}}\right)$. Now recall from Proposition 11.3.7 that $\Gamma \cong \hat{\mathbb{Z}} \ltimes \Gamma^{\prime}$ and

$$
\Gamma^{\prime} \cong \hat{\mathbb{Z}}^{(p)}(1):=\lim _{\overleftarrow{p \nmid n}} \mu_{n}(\bar{k})
$$

on which $1 \in \hat{\mathbb{Z}}$ acts by the map $x \mapsto x^{q}$ for $q:=|k|$. Taking the commutator of $1 \in \hat{\mathbb{Z}}$ with an element of $\Gamma^{\prime}$ thus corresponds to the map $x \mapsto x^{q-1}$. Under the (non-canonical) isomorphism

$$
\Gamma^{\prime} \cong \hat{\mathbb{Z}}^{(p)}(1) \cong \hat{\mathbb{Z}}^{(p)} \cong \prod_{\ell \neq p} \mathbb{Z}_{p}
$$

this map corresponds to the map $y \mapsto(q-1) \cdot y$. Thus the commutator subgroup $\Delta$ corresponds to the subgroup $(q-1) \hat{\mathbb{Z}}^{(p)}$ of $\hat{\mathbb{Z}}^{(p)}$. Since $q-1$ is already coprime to $p$, the group $\hat{\mathbb{Z}}^{(p)} /(q-1) \hat{\mathbb{Z}}^{(p)} \cong \mathbb{Z} /(q-1) \mathbb{Z}$ is finite of order $q-1$. Thus $\Gamma^{\prime} / \Delta$ is finite of order $q-1$, and hence $K^{\mathrm{atr}} / K^{\mathrm{nr}}$ is finite (and cyclic) of degree $q-1$.
3. Let $K$ be a non-archimedean local field of characteristic $p>0$. Show that for every integer $s \geqslant 0$ that is not divisible by $p$ there exists a cyclic extensions $L / K$ with Galois group $\Gamma \cong \mathbb{F}_{p}$, for which $\Gamma_{s}=\Gamma$ and $\Gamma_{s+1}=0$.
(Hint: Study polynomials of the form $X^{p}-X-a$ with $v(a)<0$.)
Solution First we recall Artin-Schreier theory, for instance from exercise 3 of series 22 of Algebra II in Spring 2023: Consider a polynomial of the form $f(X)=$ $X^{p}-X-a$ for some $a \in K$. Then if $f$ does not have a zero on $K$, any root $b \in \bar{K}$ of $f$ generates a cyclic extension of $K$ and $\operatorname{Gal}(L / K) \cong \mathbb{F}_{p}$ acts by $b \mapsto b+\alpha$ for all $\alpha \in \mathbb{F}_{p}$. (In fact, every cyclic extension of degree $p$ of any field of characteristic $p$ can be constructed in this way.)
Returning to our situation, we choose an isomorphism $K \cong k((u))$ with a finite field $k$ of characteristic $p$. Let $v$ denote the extension to $\bar{K}$ of the normalized valuation on $K$. Let $b \in \bar{K}$ be a root of the polynomial $X^{p}-X-u^{-s}$. Since the Newton polygon of this polynomial is a straight line segment of slope $\frac{s}{p}$, we then have $v(b)=-\frac{s}{p}$. As this is not an integer, we conclude that $b \notin K$. Thus $L:=K(b)$ is a cyclic Galois extension of $K$ with Galois group $\Gamma \cong \mathbb{F}_{p}$.
Now choose integers $i$ and $j$ such that $i p-j s=1$. After replacing $(i, j)$ by $(i+m s, j+m p)$ for $m \gg 0$ we may assume that $j>0$. Consider the element $\pi=u^{i} b^{j} \in L$. Then $v\left(u^{i} b^{j}\right)=i \cdot 1-j \frac{s}{p}=\frac{1}{p}$; hence $\pi$ is a uniformizer of $L$. Also any non-trivial element $\gamma \in \operatorname{Gal}(L / K)$ acts by

$$
\begin{aligned}
\pi=u^{i} b^{j} \mapsto{ }^{\gamma} \pi=u^{i}(b+\alpha)^{j} & =\left(1+\alpha b^{-1}\right)^{j} u^{i} b^{j} \\
& =\left(\sum_{\nu=0}^{j}\binom{j}{\nu} \alpha^{\nu} b^{-\nu}\right) \pi \\
& \equiv \pi+j \alpha b^{-1} \pi \bmod \left(b^{-2} \pi\right)
\end{aligned}
$$

for some $\alpha \in \mathbb{F}_{p}^{\times}$. Here $i p-j s=1$ implies that $p \nmid j$ and hence

$$
v\left(j \alpha b^{-1} \pi\right)=-v(b)+v(\pi)=\frac{s+1}{p}<\frac{2 s+1}{p}=v\left(b^{-2} \pi\right)
$$

Therefore $v\left({ }^{\gamma} \pi-\pi\right)=\frac{s+1}{p}$. For the normalized valuation $v_{L}$ on $L$ this means that $v_{L}\left({ }^{\gamma} \pi-\pi\right)=s+1$. By the definition of the lower numbering subgroups this shows that $\gamma \notin \Gamma_{s+1}$; hence $\Gamma_{s+1}=\{0\}$. On the other hand, since $L / K$ is totally ramified and $\pi$ is a uniformizer of $L$, the valuation ring of $L$ is $k[[\pi]]$. Moreover $v_{L}\left({ }^{\gamma} \pi-\pi\right)=s+1$ implies that $v_{L}\left({ }^{\gamma} c-c\right) \geqslant s+1$ for all elements $c \in k[[\pi]]$. By the definition of the lower numbering subgroups we therefore have $\gamma \in \Gamma_{s}$; hence $\Gamma_{s}=\Gamma$.
4. In the situation of the preceding exercise, what happens with polynomials of the form $X^{p}-X-a$ with $v(a) \geqslant 0$ ?
Solution In this case the polynomial has coefficients in the valuation ring and its reduction modulo the maximal polynomial is separable. Therefore the extension generated by a root of this polynomial is unramified.
5. Show that a local field of characteristic zero possesses only finitely many extensions of any fixed degree, up to isomorphism.
Solution This is clear for $K \cong \mathbb{R}, \mathbb{C}$, because its algebraic closure is finite over it. So let $K$ be a finite extension of $\mathbb{Q}_{p}$ for $p>0$.
Let $L / K$ be an extension of degree $n$. Then its normal closure $\tilde{L} / K$ has degree $\leqslant n$ !. Also char $(K)=0$ implies that $\tilde{L} / K$ is separable; so it possesses only finitely many intermediate fields. Thus it suffices to prove the desired statement for Galois extensions.
If $L / K$ is Galois, its Galois group is solvable. Thus there exist intermediate fields $L=K_{d} / \ldots / K_{1} / K_{0}=K$ such that each $K_{i} / K_{i-1}$ is Galois of prime degree. By induction it therefore suffices to prove the desired statement for cyclic extensions of prime degree.
So let $L / K$ be cyclic of prime degree $\ell$. Set $K^{\prime}:=K\left(\mu_{\ell}\right)$ and $L^{\prime}:=L K^{\prime}$. Since $\left[K^{\prime} / K\right] \leqslant \ell-1$, by Galois theory the extension $L^{\prime} / K^{\prime}$ is then again cyclic of degree $\ell$. Since $L^{\prime} / K$ possesses only finitely many intermediate fields, it thus suffices to prove the statement for $L^{\prime} / K^{\prime}$ instead of $L / K$. In other words we may suppose that $\mu_{\ell} \subset K$.
Then by Kummer theory we have $L=K(\sqrt[\ell]{a})$ for some $a \in K^{\times}$. Moreover, we have $K(\sqrt[\ell]{a})=K(\sqrt[\ell]{b})$ for any $b \in K^{\times}$for which $b / a$ is an $\ell$-th power. Thus the isomorphism class of $L / K$ is determined by the residue class of $a$ in the group $K^{\times} /\left(K^{\times}\right)^{\ell}$. But by Proposition 11.1.6 we have $K^{\times} \cong \mathbb{Z} \times \mu_{K} \times \mathbb{Z}_{p}^{n}$ with $\mu_{K}$ finite. Thus

$$
K^{\times} /\left(K^{\times}\right)^{\ell} \cong \mathbb{Z} / \ell \mathbb{Z} \times \mu_{K} / \mu_{K}^{\ell} \times \mathbb{Z}_{p}^{n} / \ell \mathbb{Z}_{p}^{n}
$$

As each factor on the right hand side is finite, it follows that $K^{\times} /\left(K^{\times}\right)^{\ell}$ is finite. Thus there are only finitely many possibilities for $L / K$ up to isomorphism, as desired.
(Aliter: One can treat unramified and tame extensions separately, for instance using the explicit description of $\operatorname{Gal}\left(K^{\text {tr }} / K\right)$ from Proposition 11.3.7. But for ramified cyclic extensions of degree $p$ one still needs to use the Kummer theory argument above.)
(Aliter: See [Lang: Algebraic Number Theory, Ch.II §5 Proposition 14].)

