Solutions 22

TAME AND WILD EXTENSIONS, RAMIFICATION FILTRATION

1. Let K be a non-archimedean local field of characteristic p > 0. Show that for any integer $n \ge 0$, up to isomorphism there exists a unique totally inseparable extension of K of degree p^n .

Solution By induction it suffices to prove the statement for n = 1. So let L/Kbe purely inseparable of degree p. Set $\varphi(x) := x^p$ for any $x \in L$. Then $\varphi(L)$ is contained in K and contains the subfield $\varphi(K)$. Thus $\varphi(L)$ is an intermediate field of the extension $K/\varphi(K)$. To understand this extension, using Proposition 11.1.4 of the lecture we may without loss of generality assume that K = k((u))for a finite field k of characteristic p. Thus $\varphi(K) = k(v)$ for $v := u^p$. Since $u \in K$ is a root of the polynomial $X^p - v \in \varphi(K)[X]$, which is irreducible by the Eisenstein criterion for the maximal ideal $(v) \subset k[[v]]$, we see that $K/\varphi(K)$ has degree p. Since $\varphi(L) \subset K$ is itself of degree p over $\varphi(K)$, we must therefore have $\varphi(L) = K$. But this now means that $L = k((\sqrt{p/u}))$ is uniquely determined up to isomorphism over K. Conversely, since $K/\varphi(K)$ is purely inseparable of degree p, the same holds for the extension $k((\sqrt[n]{u}))/K$. This proves the existence, and we are done.

2. Let K be a non-archimedean local field. Show that the maximal tame abelian extension K^{atr} of K is finite over the maximal unramified extension K^{nr} of K.

Solution By Proposition 11.3.6 of the lecture the maximal tame extension $K^{\rm tr}/K$ is Galois over K and contains $K^{\rm nr}$. By the Galois correspondence the subfield $K^{\rm atr}$ corresponds to the maximal closed normal subgroup Δ of $\Gamma := \operatorname{Gal}(K^{\mathrm{tr}}/K)$ whose factor group is abelian. Thus Δ is the closure of the commutator subgroup of Γ . As K^{nr} is abelian over K, we have $K^{\mathrm{nr}} \subset K^{\mathrm{atr}}$ and therefore $\Delta < \Gamma' := \mathrm{Gal}(K^{\mathrm{tr}}/K^{\mathrm{nr}})$.

Now recall from Proposition 11.3.7 that $\Gamma \cong \hat{\mathbb{Z}} \ltimes \Gamma'$ and

$$\Gamma' \cong \hat{\mathbb{Z}}^{(p)}(1) := \lim_{\substack{\leftarrow p \nmid n \ p \neq n}} \mu_n(\bar{k}),$$

on which $1 \in \mathbb{Z}$ acts by the map $x \mapsto x^q$ for q := |k|. Taking the commutator of $1 \in \mathbb{Z}$ with an element of Γ' thus corresponds to the map $x \mapsto x^{q-1}$. Under the (non-canonical) isomorphism

$$\Gamma' \cong \hat{\mathbb{Z}}^{(p)}(1) \cong \hat{\mathbb{Z}}^{(p)} \cong \prod_{\ell \neq p} \mathbb{Z}_p$$

this map corresponds to the map $y \mapsto (q-1) \cdot y$. Thus the commutator subgroup Δ corresponds to the subgroup $(q-1)\hat{\mathbb{Z}}^{(p)}$ of $\hat{\mathbb{Z}}^{(p)}$. Since q-1 is already coprime to p, the group $\hat{\mathbb{Z}}^{(p)}/(q-1)\hat{\mathbb{Z}}^{(p)} \cong \mathbb{Z}/(q-1)\mathbb{Z}$ is finite of order q-1. Thus Γ'/Δ is finite of order q-1, and hence $K^{\text{atr}}/K^{\text{nr}}$ is finite (and cyclic) of degree q-1.

3. Let K be a non-archimedean local field of characteristic p > 0. Show that for every integer $s \ge 0$ that is not divisible by p there exists a cyclic extensions L/Kwith Galois group $\Gamma \cong \mathbb{F}_p$, for which $\Gamma_s = \Gamma$ and $\Gamma_{s+1} = 0$.

(*Hint*: Study polynomials of the form $X^p - X - a$ with v(a) < 0.)

Solution First we recall Artin-Schreier theory, for instance from exercise 3 of series 22 of Algebra II in Spring 2023: Consider a polynomial of the form $f(X) = X^p - X - a$ for some $a \in K$. Then if f does not have a zero on K, any root $b \in \overline{K}$ of f generates a cyclic extension of K and $\operatorname{Gal}(L/K) \cong \mathbb{F}_p$ acts by $b \mapsto b + \alpha$ for all $\alpha \in \mathbb{F}_p$. (In fact, every cyclic extension of degree p of any field of characteristic p can be constructed in this way.)

Returning to our situation, we choose an isomorphism $K \cong k((u))$ with a finite field k of characteristic p. Let v denote the extension to \overline{K} of the normalized valuation on K. Let $b \in \overline{K}$ be a root of the polynomial $X^p - X - u^{-s}$. Since the Newton polygon of this polynomial is a straight line segment of slope $\frac{s}{p}$, we then have $v(b) = -\frac{s}{p}$. As this is not an integer, we conclude that $b \notin K$. Thus L := K(b) is a cyclic Galois extension of K with Galois group $\Gamma \cong \mathbb{F}_p$.

Now choose integers i and j such that ip - js = 1. After replacing (i, j) by (i + ms, j + mp) for $m \gg 0$ we may assume that j > 0. Consider the element $\pi = u^i b^j \in L$. Then $v(u^i b^j) = i \cdot 1 - j\frac{s}{p} = \frac{1}{p}$; hence π is a uniformizer of L. Also any non-trivial element $\gamma \in \text{Gal}(L/K)$ acts by

$$\pi = u^i b^j \mapsto \gamma \pi = u^i (b+\alpha)^j = (1+\alpha b^{-1})^j u^i b^j$$
$$= \left(\sum_{\nu=0}^j {j \choose \nu} \alpha^\nu b^{-\nu}\right) \pi$$
$$\equiv \pi + j \alpha b^{-1} \pi \mod (b^{-2} \pi)$$

for some $\alpha \in \mathbb{F}_p^{\times}$. Here ip - js = 1 implies that $p \nmid j$ and hence

$$v(j\alpha b^{-1}\pi) = -v(b) + v(\pi) = \frac{s+1}{p} < \frac{2s+1}{p} = v(b^{-2}\pi).$$

Therefore $v(\gamma \pi - \pi) = \frac{s+1}{p}$. For the normalized valuation v_L on L this means that $v_L(\gamma \pi - \pi) = s + 1$. By the definition of the lower numbering subgroups this shows that $\gamma \notin \Gamma_{s+1}$; hence $\Gamma_{s+1} = \{0\}$. On the other hand, since L/K is totally ramified and π is a uniformizer of L, the valuation ring of L is $k[[\pi]]$. Moreover $v_L(\gamma \pi - \pi) = s + 1$ implies that $v_L(\gamma c - c) \ge s + 1$ for all elements $c \in k[[\pi]]$. By the definition of the lower numbering subgroups we therefore have $\gamma \in \Gamma_s$; hence $\Gamma_s = \Gamma$. 4. In the situation of the preceding exercise, what happens with polynomials of the form $X^p - X - a$ with $v(a) \ge 0$?

Solution In this case the polynomial has coefficients in the valuation ring and its reduction modulo the maximal polynomial is separable. Therefore the extension generated by a root of this polynomial is unramified.

5. Show that a local field of characteristic zero possesses only finitely many extensions of any fixed degree, up to isomorphism.

Solution This is clear for $K \cong \mathbb{R}, \mathbb{C}$, because its algebraic closure is finite over it. So let K be a finite extension of \mathbb{Q}_p for p > 0.

Let L/K be an extension of degree n. Then its normal closure L/K has degree $\leq n!$. Also char(K) = 0 implies that \tilde{L}/K is separable; so it possesses only finitely many intermediate fields. Thus it suffices to prove the desired statement for Galois extensions.

If L/K is Galois, its Galois group is solvable. Thus there exist intermediate fields $L = K_d/ \dots /K_1/K_0 = K$ such that each K_i/K_{i-1} is Galois of prime degree. By induction it therefore suffices to prove the desired statement for cyclic extensions of prime degree.

So let L/K be cyclic of prime degree ℓ . Set $K' := K(\mu_{\ell})$ and L' := LK'. Since $[K'/K] \leq \ell - 1$, by Galois theory the extension L'/K' is then again cyclic of degree ℓ . Since L'/K possesses only finitely many intermediate fields, it thus suffices to prove the statement for L'/K' instead of L/K. In other words we may suppose that $\mu_{\ell} \subset K$.

Then by Kummer theory we have $L = K(\sqrt[\ell]{a})$ for some $a \in K^{\times}$. Moreover, we have $K(\sqrt[\ell]{a}) = K(\sqrt[\ell]{b})$ for any $b \in K^{\times}$ for which b/a is an ℓ -th power. Thus the isomorphism class of L/K is determined by the residue class of a in the group $K^{\times}/(K^{\times})^{\ell}$. But by Proposition 11.1.6 we have $K^{\times} \cong \mathbb{Z} \times \mu_K \times \mathbb{Z}_p^n$ with μ_K finite. Thus

$$K^{\times}/(K^{\times})^{\ell} \cong \mathbb{Z}/\ell\mathbb{Z} \times \mu_K/\mu_K^{\ell} \times \mathbb{Z}_p^n/\ell\mathbb{Z}_p^n$$

As each factor on the right hand side is finite, it follows that $K^{\times}/(K^{\times})^{\ell}$ is finite. Thus there are only finitely many possibilities for L/K up to isomorphism, as desired.

(Aliter: One can treat unramified and tame extensions separately, for instance using the explicit description of $\operatorname{Gal}(K^{\operatorname{tr}}/K)$ from Proposition 11.3.7. But for ramified cyclic extensions of degree p one still needs to use the Kummer theory argument above.)

(Aliter: See [Lang: Algebraic Number Theory, Ch.II §5 Proposition 14].)