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Solutions 23

Ramification Filtration

1. Let L/K be a finite Galois extension of nonarchimedean local fields with Galois
group Γ.

(a) Compute ηL/K(s) for all s ⩾ −1 with Γ1 ⊂ Γs.

(b) Compute the upper numbering filtration of Γ when L/K is tame.

(c) Compute the upper numbering filtration of Γ when [L/K] is prime.

Solution

(a) For all −1 < x < 0 we have Γx = Γ0. Thus for all −1 ⩽ s ⩽ 0 we have

ηL/K(s) =

∫ s

0

dx

[Γ0 : Γ0]
= s.

Next take s > 0 with Γ1 ⊂ Γs. Then for all 0 < x < s we have Γx = Γ1 and
hence

ηL/K(s) =

∫ s

0

dx

[Γ0 : Γ1]
=

s

[Γ0 : Γ1]
.

(b) The extension L/K is tame if and only if Γs = 1 for all s > 0. From (a) and
the definition of the upper numbering we deduce that Γt = Γt for all t ⩾ −1.

(c) If Γ has prime order, there exists a unique integer r ⩾ −1 such that Γx = Γ
for all x ⩽ r and Γx = 1 for all x > r. For any s ⩽ r we deduce that

ηL/K(s) =

∫ s

0

dx

[Γ0 : Γ]
= s.

As ηL/K is strictly monotone increasing, we deduce that ηL/K(s) > ηL/K(r) = r
for all s > r. Using the definition of the upper numbering we conclude that
Γt = Γt for all t ⩾ −1.

2. Determine the lower and upper numbering filtrations on Gal(K/Q2) for the fol-
lowing fields K:

(a) The splitting field of the polynomial x2 − 2.

(b) The splitting field of the polynomial x4 − 2.
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Solution

(a) By the Eisenstein criterion the polynomial is irreducible. Its roots in Q̄2

are π :=
√
2 and −

√
2. The computation π2 = 2 shows that K/Q2 has

ramification degree 2 and that v(π) = 1 for the normalized valuation v on K.
In particular this implies that OK = Z2[π]. Letting γ denote the non-trivial
element of Gal(K/Q2), we deduce that

v(γπ − π) = v
(
(−

√
2)− (

√
2)
)

= v(−2
√
2) = 3.

Using the definition of the lower numbering filtration and Lemma 11.5.3 we
deduce that γ ∈ Γs if and only if s ⩽ 2. Thus Γs = Γ for all s ⩽ 2 and Γs = 1
for all s > 2. By part (c) of the preceding exercise we deduce that Γt = Γ for
all t ⩽ 1 and Γt = 1 for all t > 2.

(b) The polynomial x4 − 2 is irreducible by the Eisenstein criterion, and one of
the roots is α := 4

√
2 and a uniformizer of the intermediate field Q2(α). The

other roots are −α and ±iα for i =
√
−1, so we first want to find out whether

i is contained in Q2(α).

Here i is a root of the polynomial X2+1. This factors as (X−1)2 modulo (2);
hence we substitute X = Y + 1, yielding the polynomial Y 2 + 2Y + 2. Here
we can substitute Y = α2Z and obtain the polynomial Z2 + α2Z + 1. This
polynomial factors as (Z−1)2 modulo (α); hence we substitute Z = U+1 and
obtain the polynomial U2 + (α2 + 2)U + (α2 + 2). The substitution U = αV
now yields V 2 + (α+ α3)V + (1 + α2). Yet again this polynomial becomes a
square modulo (α), so we substitute one more time V = W + 1 and obtain

(∗) W 2 + (α + α3 + 2)W + (α + α2 + α3 + 2).

This is an Eisenstein polynomial with respect to the maximal ideal (α) of
Z2[α]. Thus the splitting field K := Q2(α, i) is ramified of degree 2 over
Q2(α) and any root of the polynomial (∗) is a uniformizer. Substituting back
we find that one root is

β :=
i− 1− α2 − α3

α3
,

so we have OK = Z2[β].

The Galois group Γ := Gal(K/Q2) must act by α 7→ ±α,±iα and i 7→ ±i,
and since [K/Q2] = 8, all combinations of these substitutions are possible.
In particular we have Γ ∼= D4. Direct computation shows the effect on β of
the following elements σν ∈ Γ:

σ σα σi σβ σβ − β ordβ(
σβ − β)

σ1 −α i −β − 2 −2β − 2 8
σ2 iα i −β + α2 + α2β − 2 −2β + α2 + α2β − 2 4
σ3 α −i β − αi −αi 2

2



Thus for the lower numbering filtration we have σ1 ∈ Γ7∖Γ8 and σ2 ∈ Γ3∖Γ4

and σ3 ∈ Γ1 ∖ Γ2. Since σ1 = σ2
2 we deduce that

Γs =


1 if s > 7,

⟨σ1⟩ if 3 < s ⩽ 7,
⟨σ2⟩ if 1 < s ⩽ 3,
Γ if s ⩽ 1.

Using the definition of ηK/Q2 elementary computations yield ηK/Q2(1) = 1 and
ηK/Q2(3) = 2 and ηK/Q2(7) = 3, hence for the upper numbering filtration we
get

Γt =


1 if t > 3,

⟨σ1⟩ if 2 < t ⩽ 3,
⟨σ2⟩ if 1 < t ⩽ 2,
Γ if t ⩽ 1.

3. Determine the lower and upper numbering filtrations on the local galois group

Gal(Qp(µpm)/Qp) ∼= (Z/pmZ)×.

Solution Fix a primitive pm-th root of unity ζ. From Theorems 3.6.6 and 3.6.7
we know that Q(µpm)/Q has Galois group isomorphic to (Z/pmZ)× and is totally
ramified at p, that the ideal (1 − ζ) is the unique prime ideal above (p), and
that the ring of integers in Q(µpm) is Z[ζ]. Setting K := Qp(µpm), it follows that
Γ := Gal(K/Qp) is also isomorphic to (Z/pmZ)× and that OK = Zp[ζ] with the
maximal ideal (1− ζ). Let v denote the normalized valuation on K.

Consider a non-trivial element γ ∈ Γ that corresponds to [1] ̸= [a] ∈ (Z/pmZ)×.
Then r := ordp(a− 1) < m, and

v(γζ − ζ) = v(ζa − ζ) = v(1− ζa−1),

where ζa−1 is a primitive pm−r-th root of unity. Working within Qp(µpm−r) in place

of Qp(µpm) we know that (1−ζa−1)p
m−r−1(p−1)/p is a unit. Since v is the normalized

valuation on K, we deduce that

v(1− ζa−1) =
v(p)

pm−r−1(p− 1)
=

pm−1(p− 1)

pm−r−1(p− 1)
= pr.

With Lemma 11.5.3 we conclude that γ ∈ Γs if and only if pr = v(γζ − ζ) ⩾ s+1.

In particular we have Γs = Γ for all −1 ⩽ s ⩽ 0. For any real number s > 0
consider the unique integer k ⩾ 1 such that pk−1 < s + 1 ⩽ pk. If k ⩽ m, then
the above condition shows that γ ∈ Γs if and only if r ⩾ k, and so Γs corresponds
to the subgroup of all [a] ∈ (Z/pmZ)× with a ≡ 1 mod (pk). In particular Γs = 1
when k = m, and hence also whenever s+ 1 > pm−1.
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The above computation also shows that for any integer 1 ⩽ k ⩽ m we have
[Γ0 : Γx] = [Γ : Γx] = pk−1(p − 1) for all real numbers pk−1 − 1 < x ⩽ pk − 1.
Therefore ∫ pk−1

pk−1−1

dx

[Γ0 : Γx]
=

pk − pk−1

pk−1(p− 1)
= 1.

For any pk−1 − 1 < s ⩽ pk − 1 this implies that

ηL/K =

∫ s

0

dx

[Γ0 : Γx]
= k − 1 +

s+ 1− pk−1

pk−1(p− 1)

and hence k−1 < ηL/K(s) ⩽ k. Since ΓηL/K(s) = Γ2 this implies that Γt corresponds
to

{
[a] ∈ (Z/pmZ)×

∣∣ a ≡ 1 mod (pk)
}
for all k − 1 < t ⩽ k. In other words Γt

corresponds to
{
[a] ∈ (Z/pmZ)×

∣∣ a ≡ 1 mod (p⌈t⌉)
}
for all t > 0, and Γt = Γ for

all −1 ⩽ t ⩽ 0.

4. Let G be a finite group of order n, and let R be a unitary commutative ring such
that n is invertible in R. Show that for any R[G]-module M the natural map
MG → MG is an isomorphism.

Solution The natural map p : MG → MG := M/
∑

g∈G(g − 1)M is defined by
p(m) = [m] and R-linear. To construct a map in the other direction set tm :=
1
n

∑
g∈G gm for any m ∈ M . Direct computation shows that tm ∈ MG and that

t(g − 1)n = 0 for all g ∈ G and n ∈ M . In particular tm depends only on the
residue class [m] ∈ MG, and s([m]) := tm defines a map s : MG → MG. For any
m ∈ MG we have tm = m; hence s◦p = id. Conversely, for any m ∈ M and g ∈ G
we have [gm] = [m], from which we deduce that [m] = [tm]. Thus we also have
p ◦ s = id; hence s is a two-sided inverse of p, which is therefore an isomorphism.
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