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RAMIFICATION FILTRATION

1. Let L/K be a finite Galois extension of nonarchimedean local fields with Galois
group I

a) Compute n7,/k(s) for all s > —1 with I'y C T'.

/
(b) Compute the upper numbering filtration of I' when L/K is tame.
(c) Compute the upper numbering filtration of I" when [L/K] is prime.

Solution
(a) For all =1 < x < 0 we have I', = I'y. Thus for all —1 < s < 0 we have

S dx
UL/K(S) = /0 {FO:FO] = S.

Next take s > 0 with I'y C I'y. Then for all 0 < z < s we have I', = I'; and
hence

() /  dx s

s) = = )

T]L/K 0 [FO : Fl] [FO . Fl]

(b) The extension L/K is tame if and only if I'y = 1 for all s > 0. From (a) and
the definition of the upper numbering we deduce that I'* = T'; for all t > —1.

(c) If T has prime order, there exists a unique integer r > —1 such that ', =T'
forall z <rand ', =1 for all x > r. For any s < r we deduce that

* dx
ZEENS o

As 1k is strictly monotone increasing, we deduce that 1y k (s) > np/k(r) =7
for all s > r. Using the definition of the upper numbering we conclude that
=T, forallt > —1.

2. Determine the lower and upper numbering filtrations on Gal(K/Qs) for the fol-
lowing fields K:

(a) The splitting field of the polynomial z* — 2.
(b) The splitting field of the polynomial z* — 2.



Solution

(a)

By the Eisenstein criterion the polynomial is irreducible. Its roots in Q,
are T := V2 and —v/2. The computation 72 = 2 shows that K /Q2 has
ramification degree 2 and that v(7) = 1 for the normalized valuation v on K.
In particular this implies that Ok = Zy[r|. Letting v denote the non-trivial
element of Gal(K/Q,), we deduce that

(i —7) = v((—v2) - (vV2)) = o(-2v2) = 3.

Using the definition of the lower numbering filtration and Lemma 11.5.3 we
deduce that vy € I'y if and only if s < 2. ThusI'y =T forall s <2and 'y =1
for all s > 2. By part (c) of the preceding exercise we deduce that I'" =T for
allt <land I' =1 for all t > 2.

The polynomial 2* — 2 is irreducible by the Eisenstein criterion, and one of
the roots is a := v/2 and a uniformizer of the intermediate field Qy(cr). The
other roots are —a and +ia for i = v/—1, so we first want to find out whether
i is contained in Qq(a).

Here i is a root of the polynomial X?+1. This factors as (X —1)? modulo (2);
hence we substitute X =Y + 1, yielding the polynomial Y2 + 2Y + 2. Here
we can substitute Y = o?Z and obtain the polynomial Z2 + o?Z + 1. This
polynomial factors as (Z —1)? modulo («); hence we substitute Z = U +1 and
obtain the polynomial U? + (a? + 2)U + (a? + 2). The substitution U = aV'
now yields V? + (o + a®)V + (1 + o?). Yet again this polynomial becomes a
square modulo («), so we substitute one more time V = W + 1 and obtain

(%) W2+ (a+a® +2W + (a+a? + o +2).

This is an Eisenstein polynomial with respect to the maximal ideal (a)) of
Zs|a]. Thus the splitting field K := Qq(c, ) is ramified of degree 2 over
Q2(a) and any root of the polynomial (%) is a uniformizer. Substituting back
we find that one root is

i—1—a*—ad

B = : ;

a3

so we have O = Z[f].

The Galois group I' := Gal(K/Qz) must act by a — +a, £ia and i — =i,
and since [K/Qq] = 8, all combinations of these substitutions are possible.
In particular we have I' = D,. Direct computation shows the effect on 5 of
the following elements o, € I

o | 7a] 7] B | B0 [ords(“6 - B) |
o1 | —al| 1 -5 =2 —28 —2 8
oo | da| i|—B+al+a?B—-2|-28+a’+a’B—-2 4
o3| a|—1t b —ai —ai 2




Thus for the lower numbering filtration we have o; € I';\I'g and g5 € '3\ Ty
and o3 € I'; \ T'y. Since 0, = 03 we deduce that

1 if s>7,
r (o1) if 3<s<T,
3 (o9) if 1< s<3,
I if s<1.

Using the definition of 7k g, elementary computations yield nx /g, (1) = 1 and
Nk /9,(3) = 2 and 71k /q,(7) = 3, hence for the upper numbering filtration we

get
1 if t> 3,
rto— (o1) if 2 <t <3,
N (o9) if 1<t<2,
r if t<1.

3. Determine the lower and upper numbering filtrations on the local galois group
Gal(Qy(ppm)/Qp) = (Z/p™Z)".

Solution Fix a primitive p™-th root of unity ¢. From Theorems 3.6.6 and 3.6.7
we know that Q(u,m)/Q has Galois group isomorphic to (Z/p™Z)* and is totally
ramified at p, that the ideal (1 — () is the unique prime ideal above (p), and
that the ring of integers in Q(u,m) is Z[(]. Setting K := Q,(p,m ), it follows that
I' := Gal(K/Q,) is also isomorphic to (Z/p™Z)* and that O = Z,[¢] with the
maximal ideal (1 — {). Let v denote the normalized valuation on K.

Consider a non-trivial element v € I' that corresponds to [1] # [a] € (Z/p"Z)*.
Then 7 := ord,(a — 1) < m, and

v(C=¢) = v(¢"=¢) = vl ¢,

where (*~! is a primitive p™ "-th root of unity. Working within Q,(u,m=-+) in place
of Q,(1ym) we know that (1—¢1)?" " '*=1) /p is a unit. Since v is the normalized
valuation on K, we deduce that

a1y v(p) o=,
<) = prrip—1)  prrip—1 U

With Lemma 11.5.3 we conclude that v € I'y if and only if p" = v("¢( — () > s+ 1.

v(l —

In particular we have I'y = T" for all —1 < s < 0. For any real number s > 0
consider the unique integer & > 1 such that p*' < s +1 < p*. If k < m, then
the above condition shows that v € I'y if and only if » > k, and so I'y corresponds
to the subgroup of all [a] € (Z/p™Z)* with a = 1 mod (p*). In particular 'y = 1
when k& = m, and hence also whenever s +1 > p™~ 1.

3



The above computation also shows that for any integer 1 < k& < m we have
-1<

[o: T,] = [[: T,] = p*1(p — 1) for all real numbers p*~! r < pF—1.
Therefore .
pF—1 dax ko k—1
/ - P F __
iy Do) pPi(p—1)
For any p*~! — 1 < s < p¥ — 1 this implies that
5 dx s+1—pht
ok = | =2 TP
HE /0 [Co : T pFip—1)

and hence k—1 < 1y, (s) < k. Since I'"+/x(9) = T'y this implies that I'"* corresponds
to {[a] € (Z/p™Z)* | a = 1mod (p*)} for all k — 1 < ¢ < k. In other words I
corresponds to {[a] € (Z/p™Z)* | a = 1 mod (pl'1)} for all t > 0, and I'" =T for
all -1 <t <0.

. Let G be a finite group of order n, and let R be a unitary commutative ring such
that n is invertible in R. Show that for any R|G]-module M the natural map
M€ — Mg, is an isomorphism.

Solution The natural map p: MY — Mg = M/ > gec(g — 1)M is defined by
p(m) = [m] and R-linear. To construct a map in the other direction set tm :=
%Z gec gm for any m € M. Direct computation shows that tm € MY and that
t(g—1)n =0 for all g € G and n € M. In particular tm depends only on the
residue class [m] € Mg, and s([m]) := tm defines a map s: Mg — MY. For any
m € MY we have tm = m; hence sop = id. Conversely, for any m € M and g € G
we have [gm]| = [m/|, from which we deduce that [m| = [tm]. Thus we also have
pos = id; hence s is a two-sided inverse of p, which is therefore an isomorphism.



