D-MATH
Prof. Richard Pink

Number Theory II
FS 2024

Solutions 23

Ramification Filtration

1. Let L / K be a finite Galois extension of nonarchimedean local fields with Galois group Γ.
(a) Compute $\eta_{L / K}(s)$ for all $s \geqslant-1$ with $\Gamma_{1} \subset \Gamma_{s}$.
(b) Compute the upper numbering filtration of Γ when L / K is tame.
(c) Compute the upper numbering filtration of Γ when $[L / K]$ is prime.

Solution

(a) For all $-1<x<0$ we have $\Gamma_{x}=\Gamma_{0}$. Thus for all $-1 \leqslant s \leqslant 0$ we have

$$
\eta_{L / K}(s)=\int_{0}^{s} \frac{d x}{\left[\Gamma_{0}: \Gamma_{0}\right]}=s
$$

Next take $s>0$ with $\Gamma_{1} \subset \Gamma_{s}$. Then for all $0<x<s$ we have $\Gamma_{x}=\Gamma_{1}$ and hence

$$
\eta_{L / K}(s)=\int_{0}^{s} \frac{d x}{\left[\Gamma_{0}: \Gamma_{1}\right]}=\frac{s}{\left[\Gamma_{0}: \Gamma_{1}\right]}
$$

(b) The extension L / K is tame if and only if $\Gamma_{s}=1$ for all $s>0$. From (a) and the definition of the upper numbering we deduce that $\Gamma^{t}=\Gamma_{t}$ for all $t \geqslant-1$.
(c) If Γ has prime order, there exists a unique integer $r \geqslant-1$ such that $\Gamma_{x}=\Gamma$ for all $x \leqslant r$ and $\Gamma_{x}=1$ for all $x>r$. For any $s \leqslant r$ we deduce that

$$
\eta_{L / K}(s)=\int_{0}^{s} \frac{d x}{\left[\Gamma_{0}: \Gamma\right]}=s .
$$

As $\eta_{L / K}$ is strictly monotone increasing, we deduce that $\eta_{L / K}(s)>\eta_{L / K}(r)=r$ for all $s>r$. Using the definition of the upper numbering we conclude that $\Gamma^{t}=\Gamma_{t}$ for all $t \geqslant-1$.
2. Determine the lower and upper numbering filtrations on $\operatorname{Gal}\left(K / \mathbb{Q}_{2}\right)$ for the following fields K :
(a) The splitting field of the polynomial $x^{2}-2$.
(b) The splitting field of the polynomial $x^{4}-2$.

Solution

(a) By the Eisenstein criterion the polynomial is irreducible. Its roots in $\overline{\mathbb{Q}}_{2}$ are $\pi:=\sqrt{2}$ and $-\sqrt{2}$. The computation $\pi^{2}=2$ shows that K / \mathbb{Q}_{2} has ramification degree 2 and that $v(\pi)=1$ for the normalized valuation v on K. In particular this implies that $\mathcal{O}_{K}=\mathbb{Z}_{2}[\pi]$. Letting γ denote the non-trivial element of $\operatorname{Gal}\left(K / \mathbb{Q}_{2}\right)$, we deduce that

$$
v\left({ }^{\gamma} \pi-\pi\right)=v((-\sqrt{2})-(\sqrt{2}))=v(-2 \sqrt{2})=3 .
$$

Using the definition of the lower numbering filtration and Lemma 11.5.3 we deduce that $\gamma \in \Gamma_{s}$ if and only if $s \leqslant 2$. Thus $\Gamma_{s}=\Gamma$ for all $s \leqslant 2$ and $\Gamma_{s}=1$ for all $s>2$. By part (c) of the preceding exercise we deduce that $\Gamma^{t}=\Gamma$ for all $t \leqslant 1$ and $\Gamma^{t}=1$ for all $t>2$.
(b) The polynomial $x^{4}-2$ is irreducible by the Eisenstein criterion, and one of the roots is $\alpha:=\sqrt[4]{2}$ and a uniformizer of the intermediate field $\mathbb{Q}_{2}(\alpha)$. The other roots are $-\alpha$ and $\pm i \alpha$ for $i=\sqrt{-1}$, so we first want to find out whether i is contained in $\mathbb{Q}_{2}(\alpha)$.
Here i is a root of the polynomial $X^{2}+1$. This factors as $(X-1)^{2}$ modulo (2); hence we substitute $X=Y+1$, yielding the polynomial $Y^{2}+2 Y+2$. Here we can substitute $Y=\alpha^{2} Z$ and obtain the polynomial $Z^{2}+\alpha^{2} Z+1$. This polynomial factors as $(Z-1)^{2}$ modulo (α); hence we substitute $Z=U+1$ and obtain the polynomial $U^{2}+\left(\alpha^{2}+2\right) U+\left(\alpha^{2}+2\right)$. The substitution $U=\alpha V$ now yields $V^{2}+\left(\alpha+\alpha^{3}\right) V+\left(1+\alpha^{2}\right)$. Yet again this polynomial becomes a square modulo (α), so we substitute one more time $V=W+1$ and obtain

$$
\begin{equation*}
W^{2}+\left(\alpha+\alpha^{3}+2\right) W+\left(\alpha+\alpha^{2}+\alpha^{3}+2\right) . \tag{*}
\end{equation*}
$$

This is an Eisenstein polynomial with respect to the maximal ideal (α) of $\mathbb{Z}_{2}[\alpha]$. Thus the splitting field $K:=\mathbb{Q}_{2}(\alpha, i)$ is ramified of degree 2 over $\mathbb{Q}_{2}(\alpha)$ and any root of the polynomial $(*)$ is a uniformizer. Substituting back we find that one root is

$$
\beta:=\frac{i-1-\alpha^{2}-\alpha^{3}}{\alpha^{3}},
$$

so we have $\mathcal{O}_{K}=\mathbb{Z}_{2}[\beta]$.
The Galois group $\Gamma:=\operatorname{Gal}\left(K / \mathbb{Q}_{2}\right)$ must act by $\alpha \mapsto \pm \alpha, \pm i \alpha$ and $i \mapsto \pm i$, and since $\left[K / \mathbb{Q}_{2}\right]=8$, all combinations of these substitutions are possible. In particular we have $\Gamma \cong D_{4}$. Direct computation shows the effect on β of the following elements $\sigma_{\nu} \in \Gamma$:

σ	${ }^{\sigma} \alpha$	${ }^{\sigma} i$	${ }^{\sigma} \beta$	${ }^{\sigma} \beta-\beta$	$\operatorname{ord}_{\beta}\left({ }^{(} \beta-\beta\right)$
σ_{1}	$-\alpha$	i	$-\beta-2$	$-2 \beta-2$	8
σ_{2}	$i \alpha$	i	$-\beta+\alpha^{2}+\alpha^{2} \beta-2$	$-2 \beta+\alpha^{2}+\alpha^{2} \beta-2$	4
σ_{3}	α	$-i$	$\beta-\alpha i$	$-\alpha i$	2

Thus for the lower numbering filtration we have $\sigma_{1} \in \Gamma_{7} \backslash \Gamma_{8}$ and $\sigma_{2} \in \Gamma_{3} \backslash \Gamma_{4}$ and $\sigma_{3} \in \Gamma_{1} \backslash \Gamma_{2}$. Since $\sigma_{1}=\sigma_{2}^{2}$ we deduce that

$$
\Gamma_{s}=\left\{\begin{array}{cl}
1 & \text { if } s>7 \\
\left\langle\sigma_{1}\right\rangle & \text { if } 3<s \leqslant 7 \\
\left\langle\sigma_{2}\right\rangle & \text { if } 1<s \leqslant 3 \\
\Gamma & \text { if } s \leqslant 1
\end{array}\right.
$$

Using the definition of $\eta_{K / \mathbb{Q}_{2}}$ elementary computations yield $\eta_{K / \mathbb{Q}_{2}}(1)=1$ and $\eta_{K / \mathbb{Q}_{2}}(3)=2$ and $\eta_{K / \mathbb{Q}_{2}}(7)=3$, hence for the upper numbering filtration we get

$$
\Gamma^{t}=\left\{\begin{array}{cl}
1 & \text { if } t>3 \\
\left\langle\sigma_{1}\right\rangle & \text { if } 2<t \leqslant 3 \\
\left\langle\sigma_{2}\right\rangle & \text { if } 1<t \leqslant 2 \\
\Gamma & \text { if } t \leqslant 1
\end{array}\right.
$$

3. Determine the lower and upper numbering filtrations on the local galois group

$$
\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p^{m}}\right) / \mathbb{Q}_{p}\right) \cong\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}
$$

Solution Fix a primitive p^{m}-th root of unity ζ. From Theorems 3.6.6 and 3.6.7 we know that $\mathbb{Q}\left(\mu_{p^{m}}\right) / \mathbb{Q}$ has Galois group isomorphic to $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$and is totally ramified at p, that the ideal $(1-\zeta)$ is the unique prime ideal above (p), and that the ring of integers in $\mathbb{Q}\left(\mu_{p^{m}}\right)$ is $\mathbb{Z}[\zeta]$. Setting $K:=\mathbb{Q}_{p}\left(\mu_{p^{m}}\right)$, it follows that $\Gamma:=\operatorname{Gal}\left(K / \mathbb{Q}_{p}\right)$ is also isomorphic to $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$and that $\mathcal{O}_{K}=\mathbb{Z}_{p}[\zeta]$ with the maximal ideal $(1-\zeta)$. Let v denote the normalized valuation on K.
Consider a non-trivial element $\gamma \in \Gamma$ that corresponds to $[1] \neq[a] \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$. Then $r:=\operatorname{ord}_{p}(a-1)<m$, and

$$
v\left(^{\gamma} \zeta-\zeta\right)=v\left(\zeta^{a}-\zeta\right)=v\left(1-\zeta^{a-1}\right)
$$

where ζ^{a-1} is a primitive p^{m-r}-th root of unity. Working within $\mathbb{Q}_{p}\left(\mu_{p^{m-r}}\right)$ in place of $\mathbb{Q}_{p}\left(\mu_{p^{m}}\right)$ we know that $\left(1-\zeta^{a-1}\right)^{p^{m-r-1}(p-1)} / p$ is a unit. Since v is the normalized valuation on K, we deduce that

$$
v\left(1-\zeta^{a-1}\right)=\frac{v(p)}{p^{m-r-1}(p-1)}=\frac{p^{m-1}(p-1)}{p^{m-r-1}(p-1)}=p^{r} .
$$

With Lemma 11.5.3 we conclude that $\gamma \in \Gamma_{s}$ if and only if $p^{r}=v\left({ }^{\gamma} \zeta-\zeta\right) \geqslant s+1$.
In particular we have $\Gamma_{s}=\Gamma$ for all $-1 \leqslant s \leqslant 0$. For any real number $s>0$ consider the unique integer $k \geqslant 1$ such that $p^{k-1}<s+1 \leqslant p^{k}$. If $k \leqslant m$, then the above condition shows that $\gamma \in \Gamma_{s}$ if and only if $r \geqslant k$, and so Γ_{s} corresponds to the subgroup of all $[a] \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$with $a \equiv 1 \bmod \left(p^{k}\right)$. In particular $\Gamma_{s}=1$ when $k=m$, and hence also whenever $s+1>p^{m-1}$.

The above computation also shows that for any integer $1 \leqslant k \leqslant m$ we have $\left[\Gamma_{0}: \Gamma_{x}\right]=\left[\Gamma: \Gamma_{x}\right]=p^{k-1}(p-1)$ for all real numbers $p^{k-1}-1<x \leqslant p^{k}-1$. Therefore

$$
\int_{p^{k-1}-1}^{p^{k}-1} \frac{d x}{\left[\Gamma_{0}: \Gamma_{x}\right]}=\frac{p^{k}-p^{k-1}}{p^{k-1}(p-1)}=1
$$

For any $p^{k-1}-1<s \leqslant p^{k}-1$ this implies that

$$
\eta_{L / K}=\int_{0}^{s} \frac{d x}{\left[\Gamma_{0}: \Gamma_{x}\right]}=k-1+\frac{s+1-p^{k-1}}{p^{k-1}(p-1)}
$$

and hence $k-1<\eta_{L / K}(s) \leqslant k$. Since $\Gamma^{\eta_{L / K}(s)}=\Gamma_{2}$ this implies that Γ^{t} corresponds to $\left\{[a] \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times} \mid a \equiv 1 \bmod \left(p^{k}\right)\right\}$ for all $k-1<t \leqslant k$. In other words Γ^{t} corresponds to $\left\{[a] \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times} \mid a \equiv 1 \bmod \left(p^{[t]}\right)\right\}$ for all $t>0$, and $\Gamma^{t}=\Gamma$ for all $-1 \leqslant t \leqslant 0$.
4. Let G be a finite group of order n, and let R be a unitary commutative ring such that n is invertible in R. Show that for any $R[G]$-module M the natural map $M^{G} \rightarrow M_{G}$ is an isomorphism.
Solution The natural map $p: M^{G} \rightarrow M_{G}:=M / \sum_{g \in G}(g-1) M$ is defined by $p(m)=[m]$ and R-linear. To construct a map in the other direction set $t m:=$ $\frac{1}{n} \sum_{g \in G} g m$ for any $m \in M$. Direct computation shows that $t m \in M^{G}$ and that $t(g-1) n=0$ for all $g \in G$ and $n \in M$. In particular $t m$ depends only on the residue class $[m] \in M_{G}$, and $s([m]):=t m$ defines a map $s: M_{G} \rightarrow M^{G}$. For any $m \in M^{G}$ we have $t m=m$; hence $s \circ p=i d$. Conversely, for any $m \in M$ and $g \in G$ we have $[\mathrm{gm}]=[\mathrm{m}]$, from which we deduce that $[\mathrm{m}]=[\mathrm{tm}]$. Thus we also have $p \circ s=\mathrm{id}$; hence s is a two-sided inverse of p, which is therefore an isomorphism.

