Number Theory II

Exercise sheet 24

ABELIAN EXTENSIONS, GROUP COHOMOLOGY

- 1. For an integer $n \ge 2$ let L be the maximal abelian extension of \mathbb{Q} for which $\operatorname{Gal}(L/\mathbb{Q})$ has exponent dividing n. Determine $\operatorname{Gal}(L/\mathbb{Q})$ up to isomorphism.
- 2. Is there an abelian extension K/\mathbb{Q} of degree 2023 that is unramified at all primes not dividing 2024, or vice versa?
- 3. Show that, up to isomorphism, the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} from exercise 4 of sheet 20 is the unique Galois extension of \mathbb{Q} with Galois group isomorphic to \mathbb{Z}_p .
- 4. Consider a finite cyclic group G of order n and a $\mathbb{Z}[G]$ -module M. Take $i \in \{0, -1\}$.
 - (a) Show that $\hat{H}^i(G, M)$ is annihilated by n.
 - (b) Show that $\hat{H}^i(G, M)$ is finite if M is finitely generated.
- 5. Prove the Normal Basis Theorem for an arbitrary finite Galois extension L/K: There exists $b \in L$ such that the elements γb for $\gamma \in \text{Gal}(L/K)$ form a basis of L over K.