Solutions 24

ABELIAN EXTENSIONS, GROUP COHOMOLOGY

1. For an integer $n \ge 2$ let L be the maximal abelian extension of \mathbb{Q} for which $\operatorname{Gal}(L/\mathbb{Q})$ has exponent dividing n. Determine $\operatorname{Gal}(L/\mathbb{Q})$ up to isomorphism. **Solution**: Since $\operatorname{Gal}(\mathbb{Q}^{\operatorname{ab}}/\mathbb{Q}) \cong \hat{\mathbb{Z}}^{\times} \cong \prod_p \mathbb{Z}_p^{\times}$, we have $\operatorname{Gal}(\mathbb{L}/\mathbb{Q}) \cong \prod_p \mathbb{Z}_p^{\times}/(\mathbb{Z}_p^{\times})^n$. Here each \mathbb{Z}_p^{\times} is a topologically finitely generated abelian group; hence $\mathbb{Z}_p^{\times}/(\mathbb{Z}_p^{\times})^n$ is a finite abelian group of order dividing n. By the classification of finite abelian groups that is more specifically a direct product of cyclic groups of prime power

groups that is more specifically a direct product of cyclic groups of prime power order dividing n. We claim that every prime power $\ell^k | n$ occurs infinitely often as factor. As the product has countably many factors, this implies that

$$\operatorname{Gal}(L/K) \cong \prod_{\ell^k} (\mathbb{Z}/\ell^k \mathbb{Z})^{\mathbb{N}} \cong \prod_{m|n} (\mathbb{Z}/m\mathbb{Z})^{\mathbb{N}}.$$

To prove the claim consider any prime $p \equiv 1 + \ell^k \mod \ell^{k+1}$. Then we have $\ell^k | p - 1$ and $\ell^{k+1} \nmid p - 1$; hence the ℓ -Sylow subgroup of $\mathbb{Z}_p^{\times}/(\mathbb{Z}_p^{\times})^n$ is isomorphic to that of $\mathbb{F}_p^{\times}/(\mathbb{F}_p^{\times})^n$ and cyclic of order ℓ^k . As there are infinitely many such primes by Dirichlet's theorem on primes in arithmetic progressions, this proves the claim.

2. Is there an abelian extension K/\mathbb{Q} of degree 2023 that is unramified at all primes not dividing 2024, or vice versa?

Solution: By the Kronecker-Weber theorem the maximal abelian extension of \mathbb{Q} that is unramified outside $2024 = 2^3 \cdot 11 \cdot 23$ is generated by all roots of unity of order a power of 2, 11, 23, and its Galois group over \mathbb{Q} is

$$\mathbb{Z}_2^{\times} \times \mathbb{Z}_{11}^{\times} \times \mathbb{Z}_{23}^{\times} \cong \mu_2 \times \mathbb{Z}_2 \times \mu_{10} \times \mathbb{Z}_{11} \times \mu_{22} \times \mathbb{Z}_{23}.$$

Since $2023 = 7 \cdot 17^2$ is coprime to all the prime factors 2, 5, 11, 23 of the orders on the right hand side, this group does not have a subgroup of index 2023. Thus the desired field does not exist.

Similarly, the maximal abelian extension of \mathbb{Q} that is unramified outside $2023 = 7 \cdot 17^2$ is generated by all roots of unity of order a power of 7 and 17, and its Galois group over \mathbb{Q} is

$$\mathbb{Z}_7^{\times} \times \mathbb{Z}_{17}^{\times} \cong \mu_6 \times \mathbb{Z}_7 \times \mu_{16} \times \mathbb{Z}_{17}.$$

Since the factors 11 and 13 of $2024 = 2^3 \cdot 11 \cdot 23$ do not appear among the prime factors 2, 3, 7, 17 of the orders on the right hand side, this group does not have a subgroup of index 2024. Thus again the desired field does not exist.

3. Show that, up to isomorphism, the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} from exercise 4 of sheet 20 is the unique Galois extension of \mathbb{Q} with Galois group isomorphic to \mathbb{Z}_p .

Solution: By the theorem of Kronecker-Weber, any \mathbb{Z}_p -extension of \mathbb{Q} can be identified with a subfield of \mathbb{Q}^{ab} . Since $\operatorname{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \cong \hat{\mathbb{Z}}^{\times}$, by the Galois correspondence it suffices to prove that there is a unique closed subgroup $\Gamma < \hat{\mathbb{Z}}^{\times}$ with quotient isomorphic to \mathbb{Z}_p . So consider such a subgroup Γ and look at the continuous homomorphism $\pi: \hat{\mathbb{Z}}^{\times} \to \hat{\mathbb{Z}}^{\times}/\Gamma \cong \mathbb{Z}_p$.

We study the restriction of π to each factor in the decomposition $\mathbb{Z}^{\times} \cong \bigotimes_{\ell} \mathbb{Z}_{\ell}^{\times}$. For this recall that $\mathbb{Z}_{\ell}^{\times}$ is topologically isomorphic to the product of \mathbb{Z}_{ℓ} with a discrete finite group. Since \mathbb{Z}_p does not contain any non-trivial element of finite order, the restriction of π to that finite group must be trivial. Also, for $\ell \neq p$ and any $n \geq 0$ the multiplication by p^n is an isomorphism on \mathbb{Z}_{ℓ} . Thus the subgroup isomorphic to \mathbb{Z}_{ℓ} must map into $p^n \mathbb{Z}_p$ under π . Varying n this shows that its image is contained in $\bigcap_{n\geq 0} p^n \mathbb{Z}_p = \{0\}$. Together this proves that the restriction of π to $\mathbb{Z}_{\ell}^{\times}$ is trivial for every $\ell \neq p$.

Letting Γ' be the product of all those factors as well as the finite factor of \mathbb{Z}_p^{\times} , this shows that $\Gamma' < \Gamma$. On the other hand we now already have $\hat{\mathbb{Z}}^{\times}/\Gamma' \cong \mathbb{Z}_p$. Thus if $\Gamma' \neq \Gamma$, then $\hat{\mathbb{Z}}^{\times}/\Gamma$ would be isomorphic to the factor group of \mathbb{Z}_p by a nontrivial closed subgroup. But any nontrivial closed subgroup of \mathbb{Z}_p contains an element of the form $p^n u$ for some $n \ge 0$ and some $u \in \mathbb{Z}_p^{\times}$, and being closed it then contains the whole subgroup $p^n \mathbb{Z}_p$. In particular the factor group is then finite. Thus $\hat{\mathbb{Z}}^{\times}/\Gamma$ implies that $\Gamma' = \Gamma$, proving the desired uniqueness.

- 4. Consider a finite cyclic group G of order n and a $\mathbb{Z}[G]$ -module M. Take $i \in \{0, -1\}$.
 - (a) Show that $\hat{H}^i(G, M)$ is annihilated by n.
 - (b) Show that $\hat{H}^{i}(G, M)$ is finite if M is finitely generated.

Solution

(a) For any $m \in M^G$ we have g'm = m for all $g' \in G$. From $N_G := \sum_{g' \in G} g'$ we thus obtain $nm = N_G m \in N_G M$ and hence n[m] = 0 in $M^G/N_G M$. Therefore $n \cdot \hat{H}^0(G, M) = 0$. Next consider any $m \in M$ with $N_G m = 0$. Then $nm = nm - N_G m = \sum_{a' \in G} (1 - q')m \in I_G M$ and hence n[m] = 0 in $\ker(N_G|M)/I_G M$. Therefore

Next consider any $m \in M$ with $N_G m = 0$. Then $mm = n_M - N_G m = \sum_{g' \in G} (1 - g')m \in I_G M$ and hence n[m] = 0 in $\ker(N_G|M)/I_G M$. Therefore $n \cdot \hat{H}^{-1}(G, M) = 0$.

(b) The ring $\mathbb{Z}[G]$ is a free \mathbb{Z} -module of finite rank n. Since M is finitely generated over $\mathbb{Z}[G]$, it is also finitely generated over \mathbb{Z} . Since \mathbb{Z} is noetherian, the same follows for its submodules M^G and ker $(N_G|M)$ and hence for $\hat{H}^i(G, M)$. By (a) this is also annihilated by n and thus a finitely generated module over the finite ring $\mathbb{Z}/n\mathbb{Z}$. It is therefore finite. 5. Prove the Normal Basis Theorem for an arbitrary finite Galois extension L/K: There exists $b \in L$ such that the elements γb for $\gamma \in \text{Gal}(L/K)$ form a basis of L over K.

Solution See [Artin: Galois Theory, Theorem 28].