Solutions 24

Abelian Extensions, Group cohomology

1. For an integer $n \geqslant 2$ let L be the maximal abelian extension of \mathbb{Q} for which $\operatorname{Gal}(L / \mathbb{Q})$ has exponent dividing n. Determine $\operatorname{Gal}(L / \mathbb{Q})$ up to isomorphism.
Solution: Since $\operatorname{Gal}\left(\mathbb{Q}^{\text {ab }} / \mathbb{Q}\right) \cong \hat{\mathbb{Z}}^{\times} \cong \prod_{p} \mathbb{Z}_{p}^{\times}$, we have $\operatorname{Gal}(\mathrm{E} / \mathbb{Q}) \cong \prod_{p} \mathbb{Z}_{p}^{\times} /\left(\mathbb{Z}_{p}^{\times}\right)^{n}$. Here each \mathbb{Z}_{p}^{\times}is a topologically finitely generated abelian group; hence $\mathbb{Z}_{p}^{\times} /\left(\mathbb{Z}_{p}^{\times}\right)^{n}$ is a finite abelian group of order dividing n. By the classification of finite abelian groups that is more specifically a direct product of cyclic groups of prime power order dividing n. We claim that every prime power $\ell^{k} \mid n$ occurs infinitely often as factor. As the product has countably many factors, this implies that

$$
\operatorname{Gal}(L / K) \cong \prod_{\ell^{k}}\left(\mathbb{Z} / \ell^{k} \mathbb{Z}\right)^{\mathbb{N}} \cong \prod_{m \mid n}(\mathbb{Z} / m \mathbb{Z})^{\mathbb{N}}
$$

To prove the claim consider any prime $p \equiv 1+\ell^{k} \bmod \ell^{k+1}$. Then we have $\ell^{k} \mid p-1$ and $\ell^{k+1} \nmid p-1$; hence the ℓ-Sylow subgroup of $\mathbb{Z}_{p}^{\times} /\left(\mathbb{Z}_{p}^{\times}\right)^{n}$ is isomorphic to that of $\mathbb{F}_{p}^{\times} /\left(\mathbb{F}_{p}^{\times}\right)^{n}$ and cyclic of order ℓ^{k}. As there are infinitely many such primes by Dirichlet's theorem on primes in arithmetic progressions, this proves the claim.
2. Is there an abelian extension K / \mathbb{Q} of degree 2023 that is unramified at all primes not dividing 2024, or vice versa?
Solution: By the Kronecker-Weber theorem the maximal abelian extension of \mathbb{Q} that is unramified outside $2024=2^{3} \cdot 11 \cdot 23$ is generated by all roots of unity of order a power of $2,11,23$, and its Galois group over \mathbb{Q} is

$$
\mathbb{Z}_{2}^{\times} \times \mathbb{Z}_{11}^{\times} \times \mathbb{Z}_{23}^{\times} \cong \mu_{2} \times \mathbb{Z}_{2} \times \mu_{10} \times \mathbb{Z}_{11} \times \mu_{22} \times \mathbb{Z}_{23}
$$

Since $2023=7 \cdot 17^{2}$ is coprime to all the prime factors $2,5,11,23$ of the orders on the right hand side, this group does not have a subgroup of index 2023. Thus the desired field does not exist.
Similarly, the maximal abelian extension of \mathbb{Q} that is unramified outside $2023=$ $7 \cdot 17^{2}$ is generated by all roots of unity of order a power of 7 and 17 , and its Galois group over \mathbb{Q} is

$$
\mathbb{Z}_{7}^{\times} \times \mathbb{Z}_{17}^{\times} \cong \mu_{6} \times \mathbb{Z}_{7} \times \mu_{16} \times \mathbb{Z}_{17}
$$

Since the factors 11 and 13 of $2024=2^{3} \cdot 11 \cdot 23$ do not appear among the prime factors $2,3,7,17$ of the orders on the right hand side, this group does not have a subgroup of index 2024. Thus again the desired field does not exist.
3. Show that, up to isomorphism, the cyclotomic \mathbb{Z}_{p}-extension of \mathbb{Q} from exercise 4 of sheet 20 is the unique Galois extension of \mathbb{Q} with Galois group isomorphic to \mathbb{Z}_{p}.
Solution: By the theorem of Kronecker-Weber, any \mathbb{Z}_{p}-extension of \mathbb{Q} can be identified with a subfield of $\mathbb{Q}^{\text {ab }}$. Since $\operatorname{Gal}\left(\mathbb{Q}^{\text {ab }} / \mathbb{Q}\right) \cong \hat{\mathbb{Z}}^{\times}$, by the Galois correspondence it suffices to prove that there is a unique closed subgroup $\Gamma<\hat{\mathbb{Z}}^{\times}$ with quotient isomorphic to \mathbb{Z}_{p}. So consider such a subgroup Γ and look at the continuous homomorphism $\pi: \hat{\mathbb{Z}}^{\times} \rightarrow \hat{\mathbb{Z}}^{\times} / \Gamma \cong \mathbb{Z}_{p}$.
We study the restriction of π to each factor in the decomposition $\hat{\mathbb{Z}}^{\times} \cong X_{\ell} \mathbb{Z}_{\ell}^{\times}$. For this recall that $\mathbb{Z}_{\ell}^{\times}$is topologically isomorphic to the product of \mathbb{Z}_{ℓ} with a discrete finite group. Since \mathbb{Z}_{p} does not contain any non-trivial element of finite order, the restriction of π to that finite group must be trivial. Also, for $\ell \neq p$ and any $n \geqslant 0$ the multiplication by p^{n} is an isomorphism on \mathbb{Z}_{ℓ}. Thus the subgroup isomorphic to \mathbb{Z}_{ℓ} must map into $p^{n} \mathbb{Z}_{p}$ under π. Varying n this shows that its image is contained in $\bigcap_{n \geqslant 0} p^{n} \mathbb{Z}_{p}=\{0\}$. Together this proves that the restriction of π to $\mathbb{Z}_{\ell}^{\times}$is trivial for every $\ell \neq p$.
Letting Γ^{\prime} be the product of all those factors as well as the finite factor of \mathbb{Z}_{p}^{\times}, this shows that $\Gamma^{\prime}<\Gamma$. On the other hand we now already have $\hat{\mathbb{Z}}^{\times} / \Gamma^{\prime} \cong \mathbb{Z}_{p}$. Thus if $\Gamma^{\prime} \neq \Gamma$, then $\hat{\mathbb{Z}}^{\times} / \Gamma$ would be isomorphic to the factor group of \mathbb{Z}_{p} by a nontrivial closed subgroup. But any nontrivial closed subgroup of \mathbb{Z}_{p} contains an element of the form $p^{n} u$ for some $n \geqslant 0$ and some $u \in \mathbb{Z}_{p}^{\times}$, and being closed it then contains the whole subgroup $p^{n} \mathbb{Z}_{p}$. In particular the factor group is then finite. Thus $\hat{\mathbb{Z}}^{\times} / \Gamma$ implies that $\Gamma^{\prime}=\Gamma$, proving the desired uniqueness.
4. Consider a finite cyclic group G of order n and a $\mathbb{Z}[G]$-module M. Take $i \in\{0,-1\}$.
(a) Show that $\hat{H}^{i}(G, M)$ is annihilated by n.
(b) Show that $\hat{H}^{i}(G, M)$ is finite if M is finitely generated.

Solution

(a) For any $m \in M^{G}$ we have $g^{\prime} m=m$ for all $g^{\prime} \in G$. From $N_{G}:=\sum_{g^{\prime} \in G} g^{\prime}$ we thus obtain $n m=N_{G} m \in N_{G} M$ and hence $n[m]=0$ in $M^{G} / N_{G} M$. Therefore $n \cdot \hat{H}^{0}(G, M)=0$.
Next consider any $m \in M$ with $N_{G} m=0$. Then $n m=n m-N_{G} m=$ $\sum_{g^{\prime} \in G}\left(1-g^{\prime}\right) m \in I_{G} M$ and hence $n[m]=0$ in $\operatorname{ker}\left(N_{G} \mid M\right) / I_{G} M$. Therefore $n \cdot \hat{H}^{-1}(G, M)=0$.
(b) The ring $\mathbb{Z}[G]$ is a free \mathbb{Z}-module of finite rank n. Since M is finitely generated over $\mathbb{Z}[G]$, it is also finitely generated over \mathbb{Z}. Since \mathbb{Z} is noetherian, the same follows for its submodules M^{G} and $\operatorname{ker}\left(N_{G} \mid M\right)$ and hence for $\hat{H}^{i}(G, M)$. By (a) this is also annihilated by n and thus a finitely generated module over the finite ring $\mathbb{Z} / n \mathbb{Z}$. It is therefore finite.
5. Prove the Normal Basis Theorem for an arbitrary finite Galois extension L / K : There exists $b \in L$ such that the elements ${ }^{\gamma} b$ for $\gamma \in \operatorname{Gal}(L / K)$ form a basis of L over K.

Solution See [Artin: Galois Theory, Theorem 28].

