Number Theory II

FS 2024

Exercise sheet 25

LOCAL CLASS FIELD THEORY

- 1. Determine the group of norms $\operatorname{Nm}_{K/\mathbb{Q}_2} K^{\times}$ for
 - (a) $K = \mathbb{Q}_2(\sqrt{-1})$.
 - (b) $K = \mathbb{Q}_2(\sqrt{2}).$
- 2. Set $K := \mathbb{Q}_p$ and $L := \mathbb{Q}_p(\mu_p)$ for an odd prime p.
 - (a) Determine the group of norms $\operatorname{Nm}_{L/K} L^{\times} < K^{\times}$.
 - (b) Express the reciprocity isomorphism $\operatorname{Gal}(L/K) \cong K^{\times}/\operatorname{Nm}_{L/K} L^{\times}$ from local class field theory in terms of the cyclotomic character $\operatorname{Gal}(L/K) \cong \mathbb{F}_{p}^{\times}$.
- 3. Consider a local field K, a finite cyclic extension L/K, and a finite abelian extension M/L. Let σ be a generator of Gal(L/K).
 - (a) Show that M/K is Galois if and only if ${}^{\sigma}(\operatorname{Nm}_{M/L} M^{\times}) = \operatorname{Nm}_{M/L} M^{\times}$.
 - (b) Show that M/K is abelian if and only if $\{{}^{\sigma}b/b:b\in L^{\times}\}\subset \operatorname{Nm}_{M/L}M^{\times}$.