Solutions 25

Local Class Field Theory

1. Determine the group of norms $\mathrm{Nm}_{K / \mathbb{Q}_{2}} K^{\times}$for
(a) $K=\mathbb{Q}_{2}(\sqrt{-1})$.
(b) $K=\mathbb{Q}_{2}(\sqrt{2})$.

Solution

(a) Setting $i:=\sqrt{-1}$, as in exercise 3 of sheet 23 the extension K / \mathbb{Q}_{2} is ramified of degree 2 and $\mathcal{O}_{K}=\mathbb{Z}_{2}[i]$. The computation $(1-i)^{2}=-2 i$ implies that $\mathfrak{m}_{K}:=(1-i)$ is the maximal ideal of \mathcal{O}_{K}. Also $1+1=2$ and $1+(-1)=0$ and $1-(\pm i)$ are representatives of $\mathfrak{m}_{K} / \mathfrak{m}_{K}^{3}$; hence the residue classes of ± 1 and $\pm i$ make up the group of units $\left(\mathcal{O}_{K} / \mathfrak{m}_{K}^{3}\right)^{\times}$. Together this implies that

$$
K^{\times}=(1-i)^{\mathbb{Z}} \times \mu_{4} \times\left(1+\mathfrak{m}_{K}^{3}\right) .
$$

Moreover, since $v\left((1-i)^{3}\right)>v(2)$, the maps exp and log induce a natural isomorphism

$$
\left(1+\mathfrak{m}_{K}^{3}, \cdot\right) \cong\left(\mathfrak{m}_{K}^{3},+\right)=2(1-i) \mathbb{Z}_{2} \oplus 4 \mathbb{Z}_{2} .
$$

Since $\operatorname{Tr}_{K / \mathbb{Q}_{2}}(2(1-i))=4$ and $\operatorname{Tr}_{K / \mathbb{Q}_{2}}(4)=8$ this implies that $\left.\operatorname{Tr}_{K / \mathbb{Q}_{2}}\left(\mathfrak{m}_{K}^{3}\right)\right)=$ $4 \mathbb{Z}_{2}$ and hence

$$
\operatorname{Nm}_{K / \mathbb{Q}_{2}}\left(1+\mathfrak{m}_{K}^{3}\right)=\exp \left(\operatorname{Tr}_{K / \mathbb{Q}_{2}}\left(\mathfrak{m}_{K}^{3}\right)\right)=\exp \left(4 \mathbb{Z}_{2}\right)=1+4 \mathbb{Z}_{2} .
$$

On the other hand μ_{4} is generated by i with $\mathrm{Nm}_{K / \mathbb{Q}_{2}}(i)=1$, and we have $\mathrm{Nm}_{K / \mathbb{Q}_{2}}(1-i)=(1-i)(1+i)=2$. Together this shows that

$$
\mathrm{Nm}_{K / \mathbb{Q}_{2}}\left(K^{\times}\right)=2^{\mathbb{Z}} \times\left(1+4 \mathbb{Z}_{2}\right)
$$

(b) Here $(\sqrt{2})^{2}=2$ shows that K / \mathbb{Q}_{2} is ramified of degree 2 with the maximal ideal $\mathfrak{m}_{K}=(\sqrt{2})$ and $\mathcal{O}_{K}=\mathbb{Z}_{2}[\sqrt{2}]$. Also the images of $1+\sqrt{2}$ and -1 generate the group of units $\left(\mathcal{O}_{K} / \mathfrak{m}_{K}^{3}\right)^{\times}$. Together this implies that

$$
K^{\times}=\sqrt{2}^{\mathbb{Z}} \cdot(1+\sqrt{2})^{\mathbb{Z}} \cdot \mu_{2} \cdot\left(1+\mathfrak{m}_{K}^{3}\right) .
$$

Again, since $v\left(\sqrt{2}^{3}\right)>v(2)$, the maps exp and log induce a natural isomorphism

$$
\left(1+\mathfrak{m}_{K}^{3}, \cdot\right) \cong\left(\mathfrak{m}_{K}^{3},+\right)=2 \sqrt{2} \mathbb{Z}_{2} \oplus 4 \mathbb{Z}_{2}
$$

Since $\operatorname{Tr}_{K / \mathbb{Q}_{2}}(\sqrt{2})=0$ and $\operatorname{Tr}_{K / \mathbb{Q}_{2}}(4)=8$ this implies that $\left.\operatorname{Tr}_{K / \mathbb{Q}_{2}}\left(\mathfrak{m}_{K}^{3}\right)\right)=$ $8 \mathbb{Z}_{2}$ and hence

$$
\operatorname{Nm}_{K / \mathbb{Q}_{2}}\left(1+\mathfrak{m}_{K}^{3}\right)=\exp \left(\operatorname{Tr}_{K / \mathbb{Q}_{2}}\left(\mathfrak{m}_{K}^{3}\right)\right)=\exp \left(8 \mathbb{Z}_{2}\right)=1+8 \mathbb{Z}_{2} .
$$

On the other hand we have $\operatorname{Nm}_{K / \mathbb{Q}_{2}}(\sqrt{2})=-2$ and $\operatorname{Nm}_{K / \mathbb{Q}_{2}}(-1)=1$ and $\mathrm{Nm}_{K / \mathbb{Q}_{2}}(1+\sqrt{2})=(1+\sqrt{2})(1-\sqrt{2})=-1$. Together we therefore find that

$$
\mathrm{Nm}_{K / \mathbb{Q}_{2}}\left(K^{\times}\right)=(-2)^{\mathbb{Z}} \cdot\{ \pm 1\} \cdot\left(1+8 \mathbb{Z}_{2}\right) .
$$

2. Set $K:=\mathbb{Q}_{p}$ and $L:=\mathbb{Q}_{p}\left(\mu_{p}\right)$ for an odd prime p.
(a) Determine the group of norms $\mathrm{Nm}_{L / K} L^{\times}<K^{\times}$.
(b) Express the reciprocity isomorphism $\operatorname{Gal}(L / K) \cong K^{\times} / \mathrm{Nm}_{L / K} L^{\times}$from local class field theory in terms of the cyclotomic character $\operatorname{Gal}(L / K) \cong \mathbb{F}_{p}^{\times}$.

Solution Fix a primitive p-th root of unity $\zeta \in L$. Then L / K is totally ramified and $\mathcal{O}_{L}=\mathbb{Z}_{p}[\zeta]$ with maximal ideal $(1-\zeta)$.
(a) By local class field theory $\mathrm{Nm}_{L / K} L^{\times}$is a subgroup of index $[L / K]=p-1$ of $K^{\times}=p^{\mathbb{Z}} \times \mathbb{Z}_{p}^{\times}$. Computing

$$
\prod_{a=1}^{p-1}\left(X-\zeta^{a}\right)=\frac{1}{X-1} \cdot \prod_{a=0}^{p-1}\left(X-\zeta^{a}\right)=\frac{X^{p}-1}{X-1}=\sum_{a=0}^{p-1} X^{a}
$$

and setting $X=1$ we deduce that

$$
\operatorname{Nm}_{L / K}(1-\zeta)=\prod_{a=1}^{p-1}\left(1-\zeta^{a}\right)=\sum_{a=0}^{p-1} 1^{a}=p
$$

Thus p is already a norm; hence the subgroup $\mathrm{Nm}_{L / K} L^{\times}$must be $p^{\mathbb{Z}}$ times a subgroup of index $p-1$ of \mathbb{Z}_{p}^{\times}. The only such subgroup is

$$
p^{\mathbb{Z}} \times\left(1+p \mathbb{Z}_{p}\right) .
$$

(b) Since L / K is totally ramified, it is linearly disjoint from $\tilde{K}:=\mathbb{Q}_{p}^{\text {nr }}$ over K. With $\tilde{L}:=\mathbb{Q}_{p}^{\mathrm{nr}}\left(\mu_{p}\right)$ the restriction maps thus induce isomorphisms

$$
\operatorname{Gal}(\tilde{L} / \tilde{K}) \xrightarrow{\sim} \operatorname{Gal}(L / K) \text { and } \operatorname{Gal}(\tilde{L} / L) \xrightarrow{\sim} \operatorname{Gal}(\tilde{K} / K)
$$

Fix a generator $\sigma \in \operatorname{Gal}(L / K)$ that corresponds to $a \in \mathbb{F}_{p}^{\times}$under the cyclotomic character, that is, with ${ }^{\sigma} \zeta=\zeta^{a}$. Via the above isomorphism we view it as an element of $\operatorname{Gal}(\tilde{L} / \tilde{K})$. Let $\varphi \in \operatorname{Gal}(\tilde{L} / L)$ be the Frobenius substitution.

Set $\tilde{\sigma}:=\sigma \varphi$ and consider the fixed field $L_{\tilde{\sigma}}:=\tilde{L}^{\langle\tilde{\sigma}\rangle}$. Then the reciprocity isomorphism is given by

$$
r_{L / K}(\sigma)=\left[\mathrm{Nm}_{L_{\tilde{\sigma}} / K}\left(\pi_{L_{\tilde{\sigma}}}\right)\right] \in K^{\times} / \mathrm{Nm}_{L / K} L^{\times}
$$

for any uniformizer $\pi_{L_{\tilde{\sigma}}}$ of $L_{\tilde{\sigma}}$.
To compute this explicitly note first that $\tilde{\sigma}^{p-1}=\varphi^{p-1}$, whose fixed field in \tilde{L} is the unramified extension of degree $p-1$ of L and therefore equal to $L\left(\mu_{m}\right)$ for $m:=p^{p-1}-1$. Thus we have $L_{\tilde{\sigma}} \subset L\left(\mu_{m}\right)$, and $\tilde{\sigma} \mid L\left(\mu_{m}\right)$ has order $p-1$. Also, by construction \tilde{L} and $L\left(\mu_{m}\right)$ are unramified over both L and $L_{\tilde{\sigma}}$. In particular $1-\zeta \in L$ is also a uniformizer of $L\left(\mu_{m}\right)$. Choose an element $\xi \in \mathcal{O}_{K\left(\mu_{m}\right)}$ whose residue class yields a normal basis of the residue field extension $\mathbb{F}_{p}\left(\mu_{m}\right) / \mathbb{F}_{p}$, and set

$$
\pi_{L_{\tilde{\sigma}}}:=\sum_{i=0}^{p-2}\left(1-\zeta^{a^{i}}\right) \xi^{p^{i}} .
$$

Claim: The element $\pi_{L_{\tilde{\sigma}}}$ is a uniformizer of $L_{\tilde{\sigma}}$ and satisfies

$$
\operatorname{Nm}_{L_{\tilde{\sigma}} / K}\left(\pi_{L_{\tilde{\sigma}}}\right) \equiv a^{-1} p \bmod \left(p^{2}\right)
$$

Proof: By the choice of $\tilde{\sigma}$ we have ${ }^{\tilde{\sigma}} \zeta={ }^{\sigma} \zeta=\zeta^{a}$ and ${ }^{\tilde{\sigma}} \xi={ }^{\varphi} \xi=\xi^{p}$ and thus

$$
\pi_{L_{\tilde{\sigma}}}=\sum_{i=0}^{p-2} \tilde{\sigma}^{i}((1-\zeta) \xi)=\operatorname{Tr}_{L\left(\mu_{m}\right) / L_{\tilde{\sigma}}}((1-\zeta) \xi) \in L_{\tilde{\sigma}}
$$

Moreover the computation
$1-\zeta^{a^{i}}=1-\sum_{k=0}^{a^{i}}\binom{a^{i}}{k}(\zeta-1)^{k} \equiv 1-\left(1+a^{i}(\zeta-1)\right)=a^{i}(1-\zeta) \bmod (1-\zeta)^{2}$
shows that

$$
\begin{equation*}
\pi_{L_{\tilde{\sigma}}} \equiv b(1-\zeta) \bmod (1-\zeta)^{2} \tag{*}
\end{equation*}
$$

for

$$
\begin{equation*}
b:=\sum_{i=0}^{p-2} a^{i} \xi^{p^{i}} \tag{**}
\end{equation*}
$$

By the choice of ξ the residue classes $\xi^{p^{i}}$ for $0 \leqslant i \leqslant p-2$ are \mathbb{F}_{p}-linearly independent. Since $a \not \equiv 0 \bmod (p)$, we therefore have $b \not \equiv 0 \bmod (p)$. The formula $(*)$ thus implies that $\pi_{L_{\tilde{\sigma}}}$ is a unit times $1-\zeta$ and therefore a uniformizer of L and hence also of $L_{\tilde{\sigma}}$.

Next $L_{\tilde{\sigma}} / K$ is totally ramified of degree $p-1$ and the restriction induces an isomorphism $\operatorname{Gal}(\tilde{L} / \tilde{K}) \xrightarrow{\sim} \operatorname{Gal}\left(L_{\tilde{\sigma}} / K\right)$. Thus from $(*)$ we deduce that

$$
\operatorname{Nm}_{L_{\tilde{\sigma}} / K}\left(\pi_{L_{\tilde{\sigma}}}\right)=\prod_{\tau \in \operatorname{Gal}(\tilde{L} / \tilde{K})}{ }^{\tau} \pi_{L_{\tilde{\sigma}}} \equiv \prod_{\tau \in \operatorname{Gal}(\tilde{L} / \tilde{K})}{ }^{\tau} b\left(1-{ }^{\tau} \zeta\right) \bmod (1-\zeta)^{p} .
$$

Here, on the one hand, by the computation in (a) we have

$$
\prod_{\tau \in \operatorname{Gal}(\tilde{L} / \tilde{K})}\left(1-{ }^{\tau} \zeta\right)=\operatorname{Nm}_{L / K}(1-\zeta)=p
$$

On the other hand b is fixed by $\operatorname{Gal}(\tilde{L} / \tilde{K})$; hence $\operatorname{Nm}_{L_{\tilde{\sigma}} / K}(b)=b^{p-1}$. To identify this value we note that the formula $(* *)$ is reminiscent of Kummer theory. Indeed, the equations $a^{p-1}=a^{0}$ and $\xi^{p^{p-1}}=\xi$ imply that

$$
b^{p} \equiv \sum_{i=0}^{p-2} a^{i} \xi^{p^{i+1}}=\sum_{i=1}^{p-1} a^{i-1} \xi^{p^{i}}=a^{-1} \sum_{i=1}^{p-1} a^{i} \xi^{p^{i}} \equiv a^{-1} b \bmod (p)
$$

and hence $b^{p-1} \equiv a^{-1} \bmod (p)$. Since $(p)=(1-\zeta)^{p-1}$, together we get

$$
\operatorname{Nm}_{L_{\tilde{\sigma}} / K}\left(\pi_{L_{\tilde{\sigma}}}\right) \equiv a^{-1} p \bmod (1-\zeta)^{p} .
$$

Here both sides are elements of \mathbb{Z}_{p}, and since $(1-\zeta)^{p} \mathcal{O}_{\tilde{L}} \cap \mathbb{Z}_{p}=p^{2} \mathbb{Z}_{p}$, the claim follows.

Finally, since $\mathrm{Nm}_{L / K} L^{\times}=p^{\mathbb{Z}} \times\left(1+p \mathbb{Z}_{p}\right)$ by (a), the claim implies that

$$
r_{L / K}(\sigma)=\left[\operatorname{Nm}_{L_{\tilde{\sigma}} / K}\left(\pi_{L_{\tilde{\sigma}}}\right)\right]=\left[a^{-1}\right] \in K^{\times} / \mathrm{Nm}_{L / K} L^{\times} .
$$

As σ was a generator of $\operatorname{Gal}(L / K)$, it follows that the local reciprocity isomorphism $\operatorname{Gal}(L / K) \cong K^{\times} / \mathrm{Nm}_{L / K} L^{\times}$is the reciprocal (!) of that obtained from the cyclotomic character $\sigma \mapsto a$.
3. Consider a local field K, a finite cyclic extension L / K, and a finite abelian extension M / L. Let σ be a generator of $\operatorname{Gal}(L / K)$.
(a) Show that M / K is Galois if and only if ${ }^{\sigma}\left(\mathrm{Nm}_{M / L} M^{\times}\right)=\mathrm{Nm}_{M / L} M^{\times}$.
(b) Show that M / K is abelian if and only if $\left\{{ }^{\sigma} b / b: b \in L^{\times}\right\} \subset \operatorname{Nm}_{M / L} M^{\times}$.

Solution

(a) Choose an algebraic closure \bar{K} of K that contains M, and lift σ to an automorphism $\tilde{\sigma}$ of \bar{K}. Then $\tilde{\sigma}^{2} M$ is another finite abelian extension of L, and M is galois over K if and only if $\tilde{\sigma} M=M$. Since ${ }^{\tilde{\sigma}} M$ and M are galois over L, that is so if and only if they are isomorphic as extensions of L. But the local
reciprocity isomorphism yields a bijection between finite abelian extensions of L up to isomorphism and closed subgroups of finite index of L^{\times}. Thus M is galois over K if and only if

$$
\begin{equation*}
{ }^{\sigma}\left(\operatorname{Nm}_{M / L} M^{\times}\right)=\operatorname{Nm}_{\tilde{\sigma}_{M / L}} \tilde{\sigma} M^{\times}=\operatorname{Nm}_{M / L} M^{\times} . \tag{*}
\end{equation*}
$$

(b) If M / K is abelian, it is Galois, and we have a short exact sequence

Thus the group in the middle is generated by the one on the left together with the element $\tilde{\sigma} \mid M$. As the one on the left is already abelian, the whole group is abelian if and only if conjugation by $\tilde{\sigma} \mid M$ is trivial on $\operatorname{Gal}(M / L)$. By the functoriality of the local reciprocity isomorphism $\operatorname{Gal}(M / L) \cong L^{\times} / \mathrm{Nm}_{M / L} M^{\times}$ and the first equality in $(*)$ this is equivalent to saying that σ acts trivially on $L^{\times} / \mathrm{Nm}_{M / L} M^{\times}$. But that is equivalent to $\left\{{ }^{\sigma} b / b: b \in L^{\times}\right\} \subset \mathrm{Nm}_{M / L} M^{\times}$, proving the implication " \Rightarrow ".
For the converse observe that $\left\{{ }^{\sigma} b / b: b \in L^{\times}\right\} \subset \operatorname{Nm}_{M / L} M^{\times}$already implies the condition in (*). Thus M / K is Galois by (a), and so $\operatorname{Gal}(M / K)$ is abelian by the equivalence above.

