Number Theory II

Solutions 25

LOCAL CLASS FIELD THEORY

1. Determine the group of norms $\operatorname{Nm}_{K/\mathbb{Q}_2} K^{\times}$ for

- (a) $K = \mathbb{Q}_2(\sqrt{-1}).$
- (b) $K = \mathbb{Q}_2(\sqrt{2}).$

Solution

(a) Setting $i := \sqrt{-1}$, as in exercise 3 of sheet 23 the extension K/\mathbb{Q}_2 is ramified of degree 2 and $\mathcal{O}_K = \mathbb{Z}_2[i]$. The computation $(1-i)^2 = -2i$ implies that $\mathfrak{m}_K := (1-i)$ is the maximal ideal of \mathcal{O}_K . Also 1+1=2 and 1+(-1)=0and $1-(\pm i)$ are representatives of $\mathfrak{m}_K/\mathfrak{m}_K^3$; hence the residue classes of ± 1 and $\pm i$ make up the group of units $(\mathcal{O}_K/\mathfrak{m}_K^3)^{\times}$. Together this implies that

$$K^{\times} = (1-i)^{\mathbb{Z}} \times \mu_4 \times (1+\mathfrak{m}_K^3).$$

Moreover, since $v((1-i)^3) > v(2)$, the maps exp and log induce a natural isomorphism

$$(1 + \mathfrak{m}_K^3, \cdot) \cong (\mathfrak{m}_K^3, +) = 2(1 - i)\mathbb{Z}_2 \oplus 4\mathbb{Z}_2.$$

Since $\operatorname{Tr}_{K/\mathbb{Q}_2}(2(1-i)) = 4$ and $\operatorname{Tr}_{K/\mathbb{Q}_2}(4) = 8$ this implies that $\operatorname{Tr}_{K/\mathbb{Q}_2}(\mathfrak{m}_K^3) = 4\mathbb{Z}_2$ and hence

$$\operatorname{Nm}_{K/\mathbb{Q}_2}(1+\mathfrak{m}_K^3) = \exp(\operatorname{Tr}_{K/\mathbb{Q}_2}(\mathfrak{m}_K^3)) = \exp(4\mathbb{Z}_2) = 1+4\mathbb{Z}_2.$$

On the other hand μ_4 is generated by i with $\operatorname{Nm}_{K/\mathbb{Q}_2}(i) = 1$, and we have $\operatorname{Nm}_{K/\mathbb{Q}_2}(1-i) = (1-i)(1+i) = 2$. Together this shows that

$$\operatorname{Nm}_{K/\mathbb{Q}_2}(K^{\times}) = 2^{\mathbb{Z}} \times (1 + 4\mathbb{Z}_2).$$

(b) Here $(\sqrt{2})^2 = 2$ shows that K/\mathbb{Q}_2 is ramified of degree 2 with the maximal ideal $\mathfrak{m}_K = (\sqrt{2})$ and $\mathcal{O}_K = \mathbb{Z}_2[\sqrt{2}]$. Also the images of $1 + \sqrt{2}$ and -1 generate the group of units $(\mathcal{O}_K/\mathfrak{m}_K^3)^{\times}$. Together this implies that

$$K^{\times} = \sqrt{2}^{\mathbb{Z}} \cdot (1 + \sqrt{2})^{\mathbb{Z}} \cdot \mu_2 \cdot (1 + \mathfrak{m}_K^3).$$

Again, since $v(\sqrt{2}^3) > v(2)$, the maps exp and log induce a natural isomorphism

$$(1 + \mathfrak{m}_K^3, \cdot) \cong (\mathfrak{m}_K^3, +) = 2\sqrt{2}\mathbb{Z}_2 \oplus 4\mathbb{Z}_2.$$

Since $\operatorname{Tr}_{K/\mathbb{Q}_2}(\sqrt{2}) = 0$ and $\operatorname{Tr}_{K/\mathbb{Q}_2}(4) = 8$ this implies that $\operatorname{Tr}_{K/\mathbb{Q}_2}(\mathfrak{m}_K^3)) = 8\mathbb{Z}_2$ and hence

$$\operatorname{Nm}_{K/\mathbb{Q}_2}(1+\mathfrak{m}_K^3) = \exp(\operatorname{Tr}_{K/\mathbb{Q}_2}(\mathfrak{m}_K^3)) = \exp(8\mathbb{Z}_2) = 1+8\mathbb{Z}_2.$$

On the other hand we have $\operatorname{Nm}_{K/\mathbb{Q}_2}(\sqrt{2}) = -2$ and $\operatorname{Nm}_{K/\mathbb{Q}_2}(-1) = 1$ and $\operatorname{Nm}_{K/\mathbb{Q}_2}(1+\sqrt{2}) = (1+\sqrt{2})(1-\sqrt{2}) = -1$. Together we therefore find that

$$\operatorname{Nm}_{K/\mathbb{Q}_2}(K^{\times}) = (-2)^{\mathbb{Z}} \cdot \{\pm 1\} \cdot (1 + 8\mathbb{Z}_2).$$

2. Set $K := \mathbb{Q}_p$ and $L := \mathbb{Q}_p(\mu_p)$ for an odd prime p.

- (a) Determine the group of norms $\operatorname{Nm}_{L/K} L^{\times} < K^{\times}$.
- (b) Express the reciprocity isomorphism $\operatorname{Gal}(L/K) \cong K^{\times}/\operatorname{Nm}_{L/K} L^{\times}$ from local class field theory in terms of the cyclotomic character $\operatorname{Gal}(L/K) \cong \mathbb{F}_p^{\times}$.

Solution Fix a primitive *p*-th root of unity $\zeta \in L$. Then L/K is totally ramified and $\mathcal{O}_L = \mathbb{Z}_p[\zeta]$ with maximal ideal $(1 - \zeta)$.

(a) By local class field theory $\operatorname{Nm}_{L/K} L^{\times}$ is a subgroup of index [L/K] = p - 1 of $K^{\times} = p^{\mathbb{Z}} \times \mathbb{Z}_p^{\times}$. Computing

$$\prod_{a=1}^{p-1} (X - \zeta^a) = \frac{1}{X - 1} \cdot \prod_{a=0}^{p-1} (X - \zeta^a) = \frac{X^p - 1}{X - 1} = \sum_{a=0}^{p-1} X^a$$

and setting X = 1 we deduce that

$$\operatorname{Nm}_{L/K}(1-\zeta) = \prod_{a=1}^{p-1} (1-\zeta^a) = \sum_{a=0}^{p-1} 1^a = p.$$

Thus p is already a norm; hence the subgroup $\operatorname{Nm}_{L/K} L^{\times}$ must be $p^{\mathbb{Z}}$ times a subgroup of index p-1 of \mathbb{Z}_p^{\times} . The only such subgroup is

$$p^{\mathbb{Z}} \times (1 + p\mathbb{Z}_p).$$

(b) Since L/K is totally ramified, it is linearly disjoint from $\tilde{K} := \mathbb{Q}_p^{\mathrm{nr}}$ over K. With $\tilde{L} := \mathbb{Q}_p^{\mathrm{nr}}(\mu_p)$ the restriction maps thus induce isomorphisms

$$\operatorname{Gal}(\tilde{L}/\tilde{K}) \xrightarrow{\sim} \operatorname{Gal}(L/K)$$
 and $\operatorname{Gal}(\tilde{L}/L) \xrightarrow{\sim} \operatorname{Gal}(\tilde{K}/K)$

Fix a generator $\sigma \in \operatorname{Gal}(L/K)$ that corresponds to $a \in \mathbb{F}_p^{\times}$ under the cyclotomic character, that is, with ${}^{\sigma}\zeta = \zeta^a$. Via the above isomorphism we view it as an element of $\operatorname{Gal}(\tilde{L}/\tilde{K})$. Let $\varphi \in \operatorname{Gal}(\tilde{L}/L)$ be the Frobenius substitution.

Set $\tilde{\sigma} := \sigma \varphi$ and consider the fixed field $L_{\tilde{\sigma}} := \tilde{L}^{\langle \tilde{\sigma} \rangle}$. Then the reciprocity isomorphism is given by

$$r_{L/K}(\sigma) = [\operatorname{Nm}_{L_{\tilde{\sigma}}/K}(\pi_{L_{\tilde{\sigma}}})] \in K^{\times}/\operatorname{Nm}_{L/K}L^{\times}$$

for any uniformizer $\pi_{L_{\tilde{\sigma}}}$ of $L_{\tilde{\sigma}}$.

To compute this explicitly note first that $\tilde{\sigma}^{p-1} = \varphi^{p-1}$, whose fixed field in \tilde{L} is the unramified extension of degree p-1 of L and therefore equal to $L(\mu_m)$ for $m := p^{p-1} - 1$. Thus we have $L_{\tilde{\sigma}} \subset L(\mu_m)$, and $\tilde{\sigma}|L(\mu_m)$ has order p-1. Also, by construction \tilde{L} and $L(\mu_m)$ are unramified over both L and $L_{\tilde{\sigma}}$. In particular $1 - \zeta \in L$ is also a uniformizer of $L(\mu_m)$. Choose an element $\xi \in \mathcal{O}_{K(\mu_m)}$ whose residue class yields a normal basis of the residue field extension $\mathbb{F}_p(\mu_m)/\mathbb{F}_p$, and set

$$\pi_{L_{\tilde{\sigma}}} := \sum_{i=0}^{p-2} (1-\zeta^{a^i})\xi^{p^i}.$$

Claim: The element $\pi_{L_{\tilde{\sigma}}}$ is a uniformizer of $L_{\tilde{\sigma}}$ and satisfies

$$\operatorname{Nm}_{L_{\tilde{\sigma}}/K}(\pi_{L_{\tilde{\sigma}}}) \equiv a^{-1}p \mod (p^2).$$

Proof: By the choice of $\tilde{\sigma}$ we have $\tilde{\sigma}\zeta = {}^{\sigma}\zeta = \zeta^a$ and $\tilde{\sigma}\xi = {}^{\varphi}\xi = \xi^p$ and thus

$$\pi_{L_{\tilde{\sigma}}} = \sum_{i=0}^{p-2} \tilde{\sigma}^{i} ((1-\zeta)\xi) = \operatorname{Tr}_{L(\mu_{m})/L_{\tilde{\sigma}}} ((1-\zeta)\xi) \in L_{\tilde{\sigma}}.$$

Moreover the computation

$$1 - \zeta^{a^{i}} = 1 - \sum_{k=0}^{a^{i}} {a^{i} \choose k} (\zeta - 1)^{k} \equiv 1 - (1 + a^{i}(\zeta - 1)) = a^{i}(1 - \zeta) \mod (1 - \zeta)^{2}$$

shows that

(*)
$$\pi_{L_{\tilde{\sigma}}} \equiv b(1-\zeta) \mod (1-\zeta)^2$$

for

$$(**) b := \sum_{i=0}^{p-2} a^i \xi^{p^i}.$$

By the choice of ξ the residue classes ξ^{p^i} for $0 \leq i \leq p-2$ are \mathbb{F}_p -linearly independent. Since $a \not\equiv 0 \mod (p)$, we therefore have $b \not\equiv 0 \mod (p)$. The formula (*) thus implies that $\pi_{L_{\tilde{\sigma}}}$ is a unit times $1 - \zeta$ and therefore a uniformizer of L and hence also of $L_{\tilde{\sigma}}$.

Next $L_{\tilde{\sigma}}/K$ is totally ramified of degree p-1 and the restriction induces an isomorphism $\operatorname{Gal}(\tilde{L}/\tilde{K}) \xrightarrow{\sim} \operatorname{Gal}(L_{\tilde{\sigma}}/K)$. Thus from (*) we deduce that

$$\operatorname{Nm}_{L_{\tilde{\sigma}}/K}(\pi_{L_{\tilde{\sigma}}}) = \prod_{\tau \in \operatorname{Gal}(\tilde{L}/\tilde{K})} {}^{\tau}\pi_{L_{\tilde{\sigma}}} \equiv \prod_{\tau \in \operatorname{Gal}(\tilde{L}/\tilde{K})} {}^{\tau}b(1-{}^{\tau}\zeta) \mod (1-\zeta)^p.$$

Here, on the one hand, by the computation in (a) we have

$$\prod_{\tau \in \operatorname{Gal}(\tilde{L}/\tilde{K})} (1 - {}^{\tau}\zeta) = \operatorname{Nm}_{L/K} (1 - \zeta) = p.$$

On the other hand b is fixed by $\operatorname{Gal}(\tilde{L}/\tilde{K})$; hence $\operatorname{Nm}_{L_{\tilde{\sigma}}/K}(b) = b^{p-1}$. To identify this value we note that the formula (**) is reminiscent of Kummer theory. Indeed, the equations $a^{p-1} = a^0$ and $\xi^{p^{p-1}} = \xi$ imply that

$$b^{p} \equiv \sum_{i=0}^{p-2} a^{i} \xi^{p^{i+1}} = \sum_{i=1}^{p-1} a^{i-1} \xi^{p^{i}} = a^{-1} \sum_{i=1}^{p-1} a^{i} \xi^{p^{i}} \equiv a^{-1} b \mod (p)$$

and hence $b^{p-1} \equiv a^{-1} \mod (p)$. Since $(p) = (1 - \zeta)^{p-1}$, together we get

$$\operatorname{Nm}_{L_{\tilde{\sigma}}/K}(\pi_{L_{\tilde{\sigma}}}) \equiv a^{-1}p \mod (1-\zeta)^p.$$

Here both sides are elements of \mathbb{Z}_p , and since $(1-\zeta)^p \mathcal{O}_{\tilde{L}} \cap \mathbb{Z}_p = p^2 \mathbb{Z}_p$, the claim follows.

Finally, since $\operatorname{Nm}_{L/K} L^{\times} = p^{\mathbb{Z}} \times (1 + p\mathbb{Z}_p)$ by (a), the claim implies that

$$r_{L/K}(\sigma) = [\operatorname{Nm}_{L_{\tilde{\sigma}}/K}(\pi_{L_{\tilde{\sigma}}})] = [a^{-1}] \in K^{\times}/\operatorname{Nm}_{L/K}L^{\times}.$$

As σ was a generator of $\operatorname{Gal}(L/K)$, it follows that the local reciprocity isomorphism $\operatorname{Gal}(L/K) \cong K^{\times}/\operatorname{Nm}_{L/K}L^{\times}$ is the reciprocal (!) of that obtained from the cyclotomic character $\sigma \mapsto a$.

- 3. Consider a local field K, a finite cyclic extension L/K, and a finite abelian extension M/L. Let σ be a generator of Gal(L/K).
 - (a) Show that M/K is Galois if and only if $^{\sigma}(\operatorname{Nm}_{M/L} M^{\times}) = \operatorname{Nm}_{M/L} M^{\times}$.
 - (b) Show that M/K is abelian if and only if $\{\sigma b/b : b \in L^{\times}\} \subset \operatorname{Nm}_{M/L} M^{\times}$.

Solution

(a) Choose an algebraic closure \overline{K} of K that contains M, and lift σ to an automorphism $\tilde{\sigma}$ of \overline{K} . Then $\tilde{\sigma}M$ is another finite abelian extension of L, and Mis galois over K if and only if $\tilde{\sigma}M = M$. Since $\tilde{\sigma}M$ and M are galois over L, that is so if and only if they are isomorphic as extensions of L. But the local reciprocity isomorphism yields a bijection between finite abelian extensions of L up to isomorphism and closed subgroups of finite index of L^{\times} . Thus M is galois over K if and only if

$${}^{\sigma}(\operatorname{Nm}_{M/L} M^{\times}) = \operatorname{Nm}_{\tilde{\sigma}_{M/L}} {}^{\tilde{\sigma}}M^{\times} = \operatorname{Nm}_{M/L} M^{\times}.$$
(*)

(b) If M/K is abelian, it is Galois, and we have a short exact sequence

Thus the group in the middle is generated by the one on the left together with the element $\tilde{\sigma}|M$. As the one on the left is already abelian, the whole group is abelian if and only if conjugation by $\tilde{\sigma}|M$ is trivial on $\operatorname{Gal}(M/L)$. By the functoriality of the local reciprocity isomorphism $\operatorname{Gal}(M/L) \cong L^{\times}/\operatorname{Nm}_{M/L} M^{\times}$ and the first equality in (*) this is equivalent to saying that σ acts trivially on $L^{\times}/\operatorname{Nm}_{M/L} M^{\times}$. But that is equivalent to $\{\sigma b/b : b \in L^{\times}\} \subset \operatorname{Nm}_{M/L} M^{\times}$, proving the implication " \Rightarrow ".

For the converse observe that $\{{}^{\sigma}b/b : b \in L^{\times}\} \subset \operatorname{Nm}_{M/L} M^{\times}$ already implies the condition in (*). Thus M/K is Galois by (a), and so $\operatorname{Gal}(M/K)$ is abelian by the equivalence above.