Number Theory II

Exercise sheet 26

1. Let K be a nonarchimedean local field. From Corollary 12.4.4 (a) we know that the map $L \mapsto \mathcal{N}_L := \operatorname{Nm}_{L/K} L^{\times}$ is a bijection from the set of finite abelian extensions of K up to isomorphism to the set of closed subgroups of finite index of K^{\times} . We also showed that $L_1 \subset L_2 \iff \mathcal{N}_{L_1} \supset \mathcal{N}_{L_2}$. Prove the remaining parts of Corollary 12.4.4 (b), that is, the formulas

$$\mathcal{N}_{L_1L_2} = \mathcal{N}_{L_1} \cap \mathcal{N}_{L_2}, \text{ and} \\ \mathcal{N}_{L_1 \cap L_2} = \mathcal{N}_{L_1} \mathcal{N}_{L_2}.$$

2. Let M_K be the set of places of a global field K, and let S_{∞} be the subset of all archimedean places. The ring of *adeles of* K (this is a contraction of "*additive ideles*") is the subring

$$\mathbb{A}_K := \{ (a_v)_v \in \underset{v \in M_K}{\times} K_v \mid \forall' v \colon a_v \in \mathcal{O}_{K,v} \}.$$

It is endowed with the topology for which the subrings

$$\mathbb{A}_{K}^{S} := \left\{ (a_{v})_{v} \in \underset{v \in M_{K}}{\times} K_{v} \mid \forall v \notin S \colon a_{v} \in \mathcal{O}_{K,v} \right\} \cong \underset{v \in S}{\times} K_{v} \times \underset{v \in M_{K} \setminus S}{\times} \mathcal{O}_{K,v}$$

for all finite subsets $S \subset M_K$ with $S_{\infty} \subset S$ are open and carry the product topology. We identify K with its image in \mathbb{A}_K under the diagonal embedding $x \mapsto (x, x, \ldots)$ and any K_v with its image under $x_v \mapsto (1, \ldots, 1, x_v, 1, \ldots)$.

- (a) Show that for any finite extension L/K, there is a natural topological isomorphism $\mathbb{A}_L \cong \mathbb{A}_K \otimes_K L$ with respect to the topology on $\mathbb{A}_K \otimes_K L \cong (\mathbb{A}_K)^n$ induced by any ordered basis of L over K.
- (b) Show that K is discrete and cocompact in \mathbb{A}_K .
- (c) Show that for any fixed place $v \in M_K$, the subring $K \cdot K_v$ is dense in \mathbb{A}_K . (This property is called *strong approximation*.)
- (d) Show that the group of ideles I_K is topologically isomorphic to the group of units \mathbb{A}_K^{\times} with the topology induced from the embedding

$$\mathbb{A}_K^{\times} \hookrightarrow \mathbb{A}_K \times \mathbb{A}_K, \ \underline{a} \mapsto (\underline{a}, \underline{a}^{-1})$$

- (e) Does the analogue of (c) hold for I_K , that is, is the subgroup $K^{\times} \cdot K_v^{\times}$ dense in I_K for any place $v \in M_K$?
- 3. Let K be a finite extension of $\mathbb{F}_p(t)$. Let M_K denote the set of normalized valuations on K and let k_v denote the residue field at $v \in M_K$. Prove the *product* formula for all $x \in K^{\times}$:

$$\prod_{v \in M_K} |k_v|^{-v(x)} = 1.$$