
D-MATH Number Theory II FS 2024
Prof. Richard Pink

Solutions 26
Local and Global Class Field Theory

1. LetK be a nonarchimedean local field. From Corollary 12.4.4 (a) we know that the
map L 7→ NL := NmL/K L× is a bijection from the set of finite abelian extensions
of K up to isomorphism to the set of closed subgroups of finite index of K×.
We also showed that L1 ⊂ L2 ⇐⇒ NL1 ⊃ NL2 . Prove the remaining parts of
Corollary 12.4.4 (b), that is, the formulas

NL1L2 = NL1 ∩NL2 , and

NL1∩L2 = NL1NL2 .

Solution By the functoriality of the reciprocity isomorphisms we have a commu-
tative diagram

Gal(L1L2/K) �
� //

≀

Gal(L1/K)×Gal(L2/K)

≀ ≀

K×/NL1L2
// K×/NL1 ×K×/NL2 .

Thus the lower map is injective, and so NL1L2 = NL1 ∩NL2 .

Next the subgroup NL1NL2 is closed of finite index and therefore equal to NL for
some abelian extension L/K. The inclusion NLi

⊂ NL1NL2 = NL then implies
that L ⊂ Li for every i ∈ {1, 2} and therefore L ⊂ L1 ∩ L2. Conversely the
inclusion L1 ∩ L2 ⊂ Li implies that NL1∩L2 ⊃ NLi

for every i ∈ {1, 2} and hence
NL1∩L2 ⊃ NL1NL2 = NL, which in turn implies that L1∩L2 ⊂ L. Thus L1∩L2 = L
and therefore NL1∩L2 = NL = NL1NL2 .

2. Let MK be the set of places of a global field K, and let S∞ be the subset of all
archimedean places. The ring of adeles of K (this is a contraction of “additive
ideles”) is the subring

AK :=
{
(av)v ∈×

v∈MK

Kv

∣∣ ∀ ′v : av ∈ OK,v

}
.

It is endowed with the topology for which the subrings

AS
K :=

{
(av)v ∈×

v∈MK

Kv

∣∣ ∀v ̸∈ S : av ∈ OK,v

} ∼= ×
v∈S

Kv × ×
v∈MK∖S

OK,v

for all finite subsets S ⊂ MK with S∞ ⊂ S are open and carry the product
topology. We identify K with its image in AK under the diagonal embedding
x 7→ (x, x, . . .) and any Kv with its image under xv 7→ (1, . . . , 1, xv, 1, . . .).
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(a) Show that for any finite extension L/K, there is a natural topological iso-
morphism AL

∼= AK ⊗K L with respect to the topology on AK ⊗K L ∼= (AK)
n

induced by any ordered basis of L over K.

(b) Show that K is discrete and cocompact in AK .

(c) Show that for any fixed place v ∈ MK , the subring K · Kv is dense in AK .
(This property is called strong approximation.)

(d) Show that the group of ideles IK is topologically isomorphic to the group of
units A×

K with the topology induced from the embedding

A×
K ↪→ AK × AK , a 7→ (a, a−1).

(e) Does the analogue of (c) hold for IK , that is, is the subgroup K× ·K×
v dense

in IK for any place v ∈ MK?

Solution

(a) Choose an ordered basis b1, . . . , bn of L over K. Then by Proposition 9.5.2 of
the lecture, for every place v ∈ MK we have isomorphisms

(1)
Kn

v
∼ // Kv ⊗K L ∼ //×w|v Lw

(av,i)i
� //

∑
i av,i ⊗ bi

� //
(∑

i av,ibi
)
w
.

Taking the product over all v this induces isomorphisms

(2) ×
v∈MK

Kn
v

∼ // ×
v∈MK

Kv ⊗K L
∼ // ×

w∈ML

Lw.

Now let S1 be the finite set of all v ∈ MK which are either archimedean or for
which b1, . . . , bn are not all integral over OKv or for which the discriminant
disc(b1, . . . , bn) is not a unit in OKv . For every v ∈ MK ∖ S1 the maps (1)
and Proposition 9.5.6 then induce isomorphisms

(3) On
Kv

∼ // OKv ⊗OK
OL

∼ //×w|v OLw .

Thus an element (av,i)v,i ∈×v∈MK
Kn

v satisfies the additional condition for

An
K if and only if its image under the isomorphisms (2) satisfies the additional

condition for AL. The maps (2) therefore induce isomorphisms

(4) An
K

∼ // AK ⊗K L ∼ // AL.

Here the second isomorphism is natural, because it is independent of the
choice of basis.
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Now consider an arbitrary finite subset S ⊂ MK containing S1, and let T be
the set of places of L above all places in S. Then the above isomorphisms
reduce to isomorphisms

(5)

(AS
K)

n ∼ //

∥
AT

L

∥
×
v∈S

Kn
v ××

v∈MK∖S

On
K,v

∼ // ×
w∈T

Lw ××
w∈ML∖T

OK,v.

Since AS
K and AT

L carry the product topology and (1) and (3) are topological
isomorphisms, it follows that (5) is a topological isomorphism. Finally, as
S varies, the sets T are cofinal among all finite subsets of ML. Taking the
union we conclude that (4) is a topological isomorphism, as desired.

(b) By assumption K is a finite extension of Q or of Fp(t) for a prime p. By (a)
it therefore suffices to prove the assertion for K = Q and K = Fp(t).

In the caseK = Q set A := Z and let∞ denote the archimedean place. In the
case K = Fp(t) set A := Fp[t] and let ∞ denote the place with the normalized
valuation v∞(f/g) = deg(f) − deg(g). In either case A is a principal ideal
domain and the places v ̸= ∞ of K are in bijection with the equivalence
classes of prime elements p of A. In particular we have

(6) A{∞}
K = K∞ ××

p ̸=∞
Ap

and

(7) A{∞}
K ∩K = A.

We also claim that

(8) A{∞}
K +K = AK .

To see this take any a = (av)v ∈ AK and choose a finite subset S ⊂ MK with
a ∈ AS

K . Then for any p ∈ S ∖ {∞} we have Kp = Ap[p
−1] = Ap + A[p−1],

so we can choose an element bp ∈ A[p−1] with ap ∈ Ap + bp. Since this bp is
integral outside p, with b :=

∑
p bp we then have ap ∈ Ap + b for all p ̸= ∞.

Altogether we deduce that a ∈ A{∞}
K + b ⊂ A{∞}

K +K, as desired.

Now recall that by definition A{∞}
K is an open subgroup of AK . Thus K is

discrete in AK if and only if A{∞}
K ∩K is discrete in A{∞}

K . Since equations

(7) and (8) yield a topological isomorphism A{∞}
K /A ∼= AK/K, it suffices to

prove that A is discrete and cocompact in A{∞}
K .

Since A{∞}
K carries the product topology in (6) and all factors Ap are compact,

it suffices to show that the image of A in K∞ is discrete and cocompact. For
Z ⊂ R this is of course well-known. In the case K = Fp(t) we observe that

K∞ ∼= Fp((t
−1)) = Fp[t]⊕ Fp[[t

−1]] · t−1,
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where the second factor is open and compact. Thus A = Fp[t] is discrete in
K∞ and the quotient K∞/A ∼= Fp[[t

−1]] · t−1 is compact, as desired.

(c) See Section 25.4 in
https://math.mit.edu/classes/18.785/2017fa/LectureNotes25.pdf.

(d) The answer is “No”. We only explain the number field case, the function
field case being similar. Suppose that K× ·K×

v dense in IK . Let S be union
of {v} with the set of all archimedean places of K. Then

(K× ·K×
v ) ∩ ISK = (K× ∩ ISK) ·K×

v

must be dense in the open subgroup ISK of IK .

Claim: The group K× ∩ ISK is finitely generated.

Proof: By definition of ISK the group G := K×∩ISK consists of all a ∈ K× that
are units at all non-archimedean places ̸= v of K. If v is archimedean, this is
simply the group of units OK and therefore finitely generated by Dirichlet’s
unit theorem. If v is non-archimedean, the image of the associated normalized
valuation v : G → Z is of course finitely generated, so it suffices to show that
the kernel is finitely generated. But in the number field case this kernel is
again just O×

K and therefore finitely generated.

Now recall that
ISK = ×

v∈S
K×

v × ×
v∈MK∖S

O×
Kv

with the product topology. Here O×
Kv

is a profinite abelian group with a finite
cyclic direct factor µKv of even order, so it possesses a continuous surjective
homomorphism O×

Kv
↠ F2. Together this yields a continuous surjective ho-

momorphism ISK ↠ FMK∖S
2 . (Compare Exercise 1 from Series 24). But since

MK ∖ S is infinite, the image of a finitely generated subgroup can never
be dense in FMK∖S

2 . Thus K× ∩ ISK cannot be dense in ISK , and we have a
contradiction.

3. Let K be a finite extension of Fp(t). Let MK denote the set of normalized val-
uations on K and let kv denote the residue field at v ∈ MK . Prove the product
formula for all x ∈ K×: ∏

v∈MK

|kv|−v(x) = 1.

Solution For the field K0 := Fp(t) we know this from exercise 1 of sheet 16. For a
finite extension K/K0 we know from the lecture that for every v0 ∈ MK0 we have∏

v∈MK
v|v0

|kv|−v(x) = |kv0 |−v0(NmK/K0
(x)).

Thus the product formula for K follows directly from that for K0.
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