Number Theory II

Solutions 26

LOCAL AND GLOBAL CLASS FIELD THEORY

1. Let K be a nonarchimedean local field. From Corollary 12.4.4 (a) we know that the map $L \mapsto \mathcal{N}_L := \operatorname{Nm}_{L/K} L^{\times}$ is a bijection from the set of finite abelian extensions of K up to isomorphism to the set of closed subgroups of finite index of K^{\times} . We also showed that $L_1 \subset L_2 \iff \mathcal{N}_{L_1} \supset \mathcal{N}_{L_2}$. Prove the remaining parts of Corollary 12.4.4 (b), that is, the formulas

$$\mathcal{N}_{L_1 L_2} = \mathcal{N}_{L_1} \cap \mathcal{N}_{L_2}, \text{ and} \\ \mathcal{N}_{L_1 \cap L_2} = \mathcal{N}_{L_1} \mathcal{N}_{L_2}.$$

Solution By the functoriality of the reciprocity isomorphisms we have a commutative diagram

Thus the lower map is injective, and so $\mathcal{N}_{L_1L_2} = \mathcal{N}_{L_1} \cap \mathcal{N}_{L_2}$.

Next the subgroup $\mathcal{N}_{L_1}\mathcal{N}_{L_2}$ is closed of finite index and therefore equal to \mathcal{N}_L for some abelian extension L/K. The inclusion $\mathcal{N}_{L_i} \subset \mathcal{N}_{L_1}\mathcal{N}_{L_2} = \mathcal{N}_L$ then implies that $L \subset L_i$ for every $i \in \{1, 2\}$ and therefore $L \subset L_1 \cap L_2$. Conversely the inclusion $L_1 \cap L_2 \subset L_i$ implies that $\mathcal{N}_{L_1 \cap L_2} \supset \mathcal{N}_{L_i}$ for every $i \in \{1, 2\}$ and hence $\mathcal{N}_{L_1 \cap L_2} \supset \mathcal{N}_{L_1}\mathcal{N}_{L_2} = \mathcal{N}_L$, which in turn implies that $L_1 \cap L_2 \subset L$. Thus $L_1 \cap L_2 = L$ and therefore $\mathcal{N}_{L_1 \cap L_2} = \mathcal{N}_L = \mathcal{N}_{L_1}\mathcal{N}_{L_2}$.

2. Let M_K be the set of places of a global field K, and let S_{∞} be the subset of all archimedean places. The ring of *adeles of* K (this is a contraction of "*additive ideles*") is the subring

$$\mathbb{A}_K := \{ (a_v)_v \in \underset{v \in M_K}{\times} K_v \mid \forall' v \colon a_v \in \mathcal{O}_{K,v} \}.$$

It is endowed with the topology for which the subrings

$$\mathbb{A}_{K}^{S} := \left\{ (a_{v})_{v} \in \underset{v \in M_{K}}{\times} K_{v} \mid \forall v \notin S \colon a_{v} \in \mathcal{O}_{K,v} \right\} \cong \underset{v \in S}{\times} K_{v} \times \underset{v \in M_{K} \setminus S}{\times} \mathcal{O}_{K,v}$$

for all finite subsets $S \subset M_K$ with $S_{\infty} \subset S$ are open and carry the product topology. We identify K with its image in \mathbb{A}_K under the diagonal embedding $x \mapsto (x, x, \ldots)$ and any K_v with its image under $x_v \mapsto (1, \ldots, 1, x_v, 1, \ldots)$.

- (a) Show that for any finite extension L/K, there is a natural topological isomorphism $\mathbb{A}_L \cong \mathbb{A}_K \otimes_K L$ with respect to the topology on $\mathbb{A}_K \otimes_K L \cong (\mathbb{A}_K)^n$ induced by any ordered basis of L over K.
- (b) Show that K is discrete and cocompact in \mathbb{A}_K .
- (c) Show that for any fixed place $v \in M_K$, the subring $K \cdot K_v$ is dense in \mathbb{A}_K . (This property is called *strong approximation*.)
- (d) Show that the group of ideles I_K is topologically isomorphic to the group of units \mathbb{A}_K^{\times} with the topology induced from the embedding

$$\mathbb{A}_K^{\times} \hookrightarrow \mathbb{A}_K \times \mathbb{A}_K, \ \underline{a} \mapsto (\underline{a}, \underline{a}^{-1}).$$

(e) Does the analogue of (c) hold for I_K , that is, is the subgroup $K^{\times} \cdot K_v^{\times}$ dense in I_K for any place $v \in M_K$?

Solution

(a) Choose an ordered basis b_1, \ldots, b_n of L over K. Then by Proposition 9.5.2 of the lecture, for every place $v \in M_K$ we have isomorphisms

(1)
$$\begin{array}{ccc} K_v^n & \xrightarrow{\sim} & K_v \otimes_K L & \xrightarrow{\sim} & \swarrow_{w|v} L_w \\ (a_{v,i})_i & \longmapsto & \sum_i a_{v,i} \otimes b_i & \longmapsto & \left(\sum_i a_{v,i} b_i\right)_w. \end{array}$$

Taking the product over all v this induces isomorphisms

(2)
$$\underset{v \in M_K}{\times} K_v^n \xrightarrow{\sim} \underset{v \in M_K}{\times} K_v \otimes_K L \xrightarrow{\sim} \underset{w \in M_L}{\times} L_w.$$

Now let S_1 be the finite set of all $v \in M_K$ which are either archimedean or for which b_1, \ldots, b_n are not all integral over \mathcal{O}_{K_v} or for which the discriminant $\operatorname{disc}(b_1, \ldots, b_n)$ is not a unit in \mathcal{O}_{K_v} . For every $v \in M_K \setminus S_1$ the maps (1) and Proposition 9.5.6 then induce isomorphisms

(3)
$$\mathcal{O}_{K_v}^n \xrightarrow{\sim} \mathcal{O}_{K_v} \otimes_{\mathcal{O}_K} \mathcal{O}_L \xrightarrow{\sim} X_{w|v} \mathcal{O}_{L_w}$$

Thus an element $(a_{v,i})_{v,i} \in X_{v \in M_K} K_v^n$ satisfies the additional condition for \mathbb{A}_K^n if and only if its image under the isomorphisms (2) satisfies the additional condition for \mathbb{A}_L . The maps (2) therefore induce isomorphisms

(4)
$$\mathbb{A}_K^n \xrightarrow{\sim} \mathbb{A}_K \otimes_K L \xrightarrow{\sim} \mathbb{A}_L.$$

Here the second isomorphism is natural, because it is independent of the choice of basis.

Now consider an arbitrary finite subset $S \subset M_K$ containing S_1 , and let T be the set of places of L above all places in S. Then the above isomorphisms reduce to isomorphisms

Since \mathbb{A}_{K}^{S} and \mathbb{A}_{L}^{T} carry the product topology and (1) and (3) are topological isomorphisms, it follows that (5) is a topological isomorphism. Finally, as S varies, the sets T are cofinal among all finite subsets of M_{L} . Taking the union we conclude that (4) is a topological isomorphism, as desired.

(b) By assumption K is a finite extension of \mathbb{Q} or of $\mathbb{F}_p(t)$ for a prime p. By (a) it therefore suffices to prove the assertion for $K = \mathbb{Q}$ and $K = \mathbb{F}_p(t)$.

In the case $K = \mathbb{Q}$ set $A := \mathbb{Z}$ and let ∞ denote the archimedean place. In the case $K = \mathbb{F}_p(t)$ set $A := \mathbb{F}_p[t]$ and let ∞ denote the place with the normalized valuation $v_{\infty}(f/g) = \deg(f) - \deg(g)$. In either case A is a principal ideal domain and the places $v \neq \infty$ of K are in bijection with the equivalence classes of prime elements p of A. In particular we have

(6)
$$\mathbb{A}_{K}^{\{\infty\}} = K_{\infty} \times \bigotimes_{p \neq \infty} A_{p}$$

and

(7)
$$\mathbb{A}_{K}^{\{\infty\}} \cap K = A.$$

We also claim that

(8)
$$\mathbb{A}_{K}^{\{\infty\}} + K = \mathbb{A}_{K}$$

To see this take any $\underline{a} = (a_v)_v \in \mathbb{A}_K$ and choose a finite subset $S \subset M_K$ with $\underline{a} \in \mathbb{A}_K^S$. Then for any $p \in S \setminus \{\infty\}$ we have $K_p = A_p[p^{-1}] = A_p + A[p^{-1}]$, so we can choose an element $b_p \in A[p^{-1}]$ with $a_p \in A_p + b_p$. Since this b_p is integral outside p, with $b := \sum_p b_p$ we then have $a_p \in A_p + b$ for all $p \neq \infty$. Altogether we deduce that $\underline{a} \in \mathbb{A}_K^{\{\infty\}} + b \subset \mathbb{A}_K^{\{\infty\}} + K$, as desired.

Now recall that by definition $\mathbb{A}_{K}^{\{\infty\}}$ is an open subgroup of \mathbb{A}_{K} . Thus K is discrete in \mathbb{A}_{K} if and only if $\mathbb{A}_{K}^{\{\infty\}} \cap K$ is discrete in $\mathbb{A}_{K}^{\{\infty\}}$. Since equations (7) and (8) yield a topological isomorphism $\mathbb{A}_{K}^{\{\infty\}}/A \cong \mathbb{A}_{K}/K$, it suffices to prove that A is discrete and cocompact in $\mathbb{A}_{K}^{\{\infty\}}$.

Since $\mathbb{A}_{K}^{\{\infty\}}$ carries the product topology in (6) and all factors A_{p} are compact, it suffices to show that the image of A in K_{∞} is discrete and cocompact. For $\mathbb{Z} \subset \mathbb{R}$ this is of course well-known. In the case $K = \mathbb{F}_{p}(t)$ we observe that

$$K_{\infty} \cong \mathbb{F}_p((t^{-1})) = \mathbb{F}_p[t] \oplus \mathbb{F}_p[[t^{-1}]] \cdot t^{-1},$$

where the second factor is open and compact. Thus $A = \mathbb{F}_p[t]$ is discrete in K_{∞} and the quotient $K_{\infty}/A \cong \mathbb{F}_p[[t^{-1}]] \cdot t^{-1}$ is compact, as desired.

(c) See Section 25.4 in

https://math.mit.edu/classes/18.785/2017fa/LectureNotes25.pdf.

(d) The answer is "No". We only explain the number field case, the function field case being similar. Suppose that $K^{\times} \cdot K_v^{\times}$ dense in I_K . Let S be union of $\{v\}$ with the set of all archimedean places of K. Then

$$(K^{\times} \cdot K_v^{\times}) \cap I_K^S = (K^{\times} \cap I_K^S) \cdot K_v^{\times}$$

must be dense in the open subgroup I_K^S of I_K .

Claim: The group $K^{\times} \cap I_K^S$ is finitely generated.

Proof: By definition of I_K^S the group $G := K^{\times} \cap I_K^S$ consists of all $a \in K^{\times}$ that are units at all non-archimedean places $\neq v$ of K. If v is archimedean, this is simply the group of units \mathcal{O}_K and therefore finitely generated by Dirichlet's unit theorem. If v is non-archimedean, the image of the associated normalized valuation $v: G \to \mathbb{Z}$ is of course finitely generated, so it suffices to show that the kernel is finitely generated. But in the number field case this kernel is again just \mathcal{O}_K^{\times} and therefore finitely generated. \Box

Now recall that

$$I_K^S = \underset{v \in S}{\times} K_v^{\times} \times \underset{v \in M_K \smallsetminus S}{\times} \mathcal{O}_{K_v}^{\times}$$

with the product topology. Here $\mathcal{O}_{K_v}^{\times}$ is a profinite abelian group with a finite cyclic direct factor μ_{K_v} of even order, so it possesses a continuous surjective homomorphism $\mathcal{O}_{K_v}^{\times} \twoheadrightarrow \mathbb{F}_2$. Together this yields a continuous surjective homomorphism $I_K^S \twoheadrightarrow \mathbb{F}_2^{M_K \setminus S}$. (Compare Exercise 1 from Series 24). But since $M_K \setminus S$ is infinite, the image of a finitely generated subgroup can never be dense in $\mathbb{F}_2^{M_K \setminus S}$. Thus $K^{\times} \cap I_K^S$ cannot be dense in I_K^S , and we have a contradiction.

3. Let K be a finite extension of $\mathbb{F}_p(t)$. Let M_K denote the set of normalized valuations on K and let k_v denote the residue field at $v \in M_K$. Prove the product formula for all $x \in K^{\times}$:

$$\prod_{v \in M_K} |k_v|^{-v(x)} = 1.$$

Solution For the field $K_0 := \mathbb{F}_p(t)$ we know this from exercise 1 of sheet 16. For a finite extension K/K_0 we know from the lecture that for every $v_0 \in M_{K_0}$ we have

$$\prod_{\substack{v \in M_K \\ v \mid v_0}} |k_v|^{-v(x)} = |k_{v_0}|^{-v_0(\operatorname{Nm}_{K/K_0}(x))}.$$

Thus the product formula for K follows directly from that for K_0 .