Number Theory II

Exercise sheet 27

CLASS FIELDS, RECIPROCITY LAWS

1. Let K be a number field. Call an element $x \in K^{\times}$ totally positive if it becomes positive under every real embedding of K. Let $\operatorname{Cl}'(\mathcal{O}_K)$ denote the group of all fractional ideals of \mathcal{O}_K modulo the subgroup of principal ideals generated by totally positive elements of K^{\times} . Show that the maximal abelian extension H/K that is everywhere unramified possesses a natural isomorphism

$$\operatorname{Gal}(H/K) \cong \operatorname{Cl}'(\mathcal{O}_K).$$

- 2. Deduce the two supplements of the quadratic reciprocity law from the reciprocity isomorphism of global class field theory.
- 3. (A cubic reciprocity law) Recall that the number field $K := \mathbb{Q}(\mu_3) = \mathbb{Q}(\sqrt{-3})$ is imaginary quadratic, that $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ is a principal ideal domain, and that $3\mathcal{O}_K = \mathfrak{m}^2$ for the maximal ideal $\mathfrak{m} := (\sqrt{-3})$. Take inequivalent primes $\pi, \rho \in \mathcal{O}_K \setminus \mathfrak{m}$ and consider the extension $L := K(\sqrt[3]{\pi})$ of K, which by Kummer theory is cyclic with Galois group μ_3 .
 - (a) Show that all primes $\neq \mathfrak{m}, (\pi)$ of \mathcal{O}_K are unramified in L.
 - (b) Show that \mathfrak{m} is unramified in L if and only if $\pi \equiv \pm 1 \mod \mathfrak{m}^3$.
 - (c) Assuming this, prove that the residue class of π is a cube in the residue field $\mathcal{O}_K/(\rho)$ if and only if the residue class of ρ is a cube in $\mathcal{O}_K/(\pi)$.