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Prof. Richard Pink

Solutions 27
Class Fields, Reciprocity Laws

1. Let K be a number field. Call an element x ∈ K× totally positive if it becomes
positive under every real embedding of K. Let Cl′(OK) denote the group of all
fractional ideals ofOK modulo the subgroup of principal ideals generated by totally
positive elements of K×. Show that the maximal abelian extension H/K that is
everywhere unramified possesses a natural isomorphism

Gal(H/K) ∼= Cl′(OK).

Solution The field H is the big Hilbert class field of K, and by the reciprocity
isomorphism we have

Gal(H/K) ∼= CK/NmL/K CL
∼= IK/I

(1)
K K× (∗)

for the subgroup
I
(1)
K := ×

v∈S∞

(K×
v )

◦ × ×
v∈MK∖S∞

O×
Kv

⊂ IK .

This subgroup is contained in the subgroup

I ′K := IK ∩
(×
v∈S∞

(K×
v )

◦ × ×
v∈MK∖S∞

K×
v

)
⊂ IK .

Since K is dense in K ⊗Q R =×v∈S∞
Kv, we have(×

v∈S∞

(K×
v )

◦
)
·K× = ×

v∈S∞

K×
v

and thus I ′KK
× = IK . By the first isomorphism theorem we therefore have

IK/K
× ∼= I ′K/(I

′
K ∩K×),

where I ′K ∩K× is the subgroup of all totally positive elements of K×. With (∗)
we deduce that

Gal(H/K) ∼= IK/I
(1)
K K× ∼= I ′K

/
I
(1)
K (I ′K ∩K×). (∗∗)

On the other hand, as in Proposition 13.2.2 we have a natural surjective homo-
morphism

I ′K
// Frac(OK) := {fractional ideals of OK},

(xv)v
� //

∏
v∈MK∖S∞

p
v(xv)
v

whose kernel is the subgroup I ′K . The image of I ′K ∩ K× under this homomor-
phism is precisely the subgroup of principal ideals generated by totally posi-
tive elements of K×. From (∗∗) we therefore obtain a natural isomorphism
Gal(H/K) ∼= Cl′(OK).
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2. Deduce the two supplements of the quadratic reciprocity law from the reciprocity
isomorphism of global class field theory.

Solution Consider an odd prime number p.

(a) For the first supplement take K := Q(i) with i =
√
−1. From Example 6.2.6

of the lecture we already know that (−1
p
) = 1 if and only if p splits in K. By

global class field theory this is equivalent to the equality

[(1, . . . , 1, p, 1, . . .)] = 1 in IQ
/
Q× · NmK/Q IK ,

where the entry p is at the place p. As the idele classes are taken modulo Q×,
this is equivalent to

[(p−1, . . . , p−1, 1, p−1, . . .)] = 1 in IQ
/
Q× · NmK/Q IK ,

where the entry 1 is at the place p. Since every prime ℓ ̸= 2, p is unramified
in K, the unit p−1 is already a local norm at ℓ. Also p−1 > 0 is a local norm
at ∞. The condition is therefore equivalent to

[(1, . . . , 1, p−1, 1, )] = 1 in IQ
/
Q× · NmK/Q IK ,

where the entry p−1 is at the place 2. Now recall that 2 is ramified in K
and let p be the prime of K above it. Under the reciprocity isomorphism
IQ/Q× · NmK/Q IK ∼= Gal(K/Q) the idele class in question is the image of

[p−1] ∈ Q×
2 /NmKp/Q2(K

×
p )

∼= Gal(Kp/Q2).

But by the solution of exercise 1 (a) of sheet 25 we have

NmKp/Q2(K
×) = 2Z × (1 + 4Z2).

Since p is odd, this class therefore vanishes if and only if p ≡ 1 mod (4), or

again if (−1)
p−1
2 = 1. Altogether this proves the desired equality

(−1
p
) = (−1)

p−1
2 .

(b) For the second supplement take K := Q(
√
2). Then from Example 6.2.6 of

the lecture we already know that (2
p
) = 1 if and only if p splits in K. By

global class field theory this is equivalent to the equality

[(1, . . . , 1, p, 1, . . .)] = 1 in IQ
/
Q× · NmK/Q IK ,

where the entry p is at the place p. As the idele classes are taken modulo Q×,
this is equivalent to

[(p−1, . . . , p−1, 1, p−1, . . .)] = 1 in IQ
/
Q× · NmK/Q IK ,
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where the entry 1 is at the place p. Since every prime ℓ ̸= 2, p is unramified
in K, the unit p−1 is already a local norm at ℓ. Also p−1 > 0 is a local norm
at ∞. The condition is therefore equivalent to

[(1, . . . , 1, p−1, 1, )] = 1 in IQ
/
Q× · NmK/Q IK ,

where the entry p−1 is at the place 2. Now recall that 2 is ramified in K
and let p be the prime of K above it. Under the reciprocity isomorphism
IQ/Q× · NmK/Q IK ∼= Gal(K/Q) the idele class in question is the image of

[p−1] ∈ Q×
2 /NmKp/Q2(K

×
p )

∼= Gal(Kp/Q2).

But by the solution of exercise 1 (b) of sheet 25 we have

NmK/Q2(K
×) = (−2)Z · {±1} · (1 + 8Z2).

Since p is odd, this class therefore vanishes if and only if p ≡ ±1 mod (8).

This is equivalent to p2 ≡ 1 mod (16) or again to (−1)
p2−1

8 = 1. Altogether
this proves the desired equality

(−1
p
) = (−1)

p2−1
8 .

3. (A cubic reciprocity law) Recall that the number field K := Q(µ3) = Q(
√
−3)

is imaginary quadratic, that OK = Z[1+
√
−3

2
] is a principal ideal domain, and

that 3OK = m2 for the maximal ideal m := (
√
−3). Take inequivalent primes

π, ρ ∈ OK ∖ m and consider the extension L := K( 3
√
π) of K, which by Kummer

theory is cyclic with Galois group µ3.

(a) Show that all primes ̸= m, (π) of OK are unramified in L.

(b) Show that m is unramified in L if and only if π ≡ ±1 mod m3.

(c) Assuming this, prove that the residue class of π is a cube in the residue field
OK/(ρ) if and only if the residue class of ρ is a cube in OK/(π).

Solution

(a) It suffices to show that (ρ) is unramified in L. Since ρ is coprime to 3π,
the polynomial X3 − π is separable modulo (ρ). Therefore OL · OK,(ρ)

∼=
OK,(ρ)[X]/(X3 − π) by Proposition 9.5.6 of the lecture, and (ρ) is unramified
in L.

(b) From OK = Z[1+
√
−3

2
] we deduce that OKm = Z3[

√
−3] and hence

OKm [
3
√
π] ∼= Z3[

√
−3, X]/(X3 − π).
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Substituting X = Y + π we can rewrite this as

OKm [
3
√
π] ∼= Z3[

√
−3, Y ]/(Y 3 + 3πY 2 + 3π2Y + π3 − π).

Here π3 − π ∈ m, because the residue field OK/m has order 3. Therefore
ordm(π

3 − π) ⩾ 1.

Suppose first that ordm(π
3 − π) ⩽ 2. Then ordm(3) = 2 and ordm(π) = 0

imply that the Newton polygon of the polynomial Y 3+3πY 2+3π2Y +π3−π
is a straight line segment of slope −1/3 or −2/3. Thus the image 3

√
π−π ∈ L

of Y acquires valuation 1/3 or 2/3 above m, and so m is ramified in L.

Suppose now that ordm(π
3 − π) ⩾ 3. Then substituting Y =

√
−3Z and

dividing by (
√
−3)3 implies that

OKm

[ 3√π−π√
−3

] ∼= Z3

[√
−3, Z

]/(
Z3 −

√
−3πZ2 − π2Z + π3−π

−3
√
−3

)
,

where the polynomial has coefficients in Z3[
√
−3]. In particular

3√π−π√
−3

is

integral over Z3[
√
−3]. Also, the polynomial in Z reduces to Z3 − π2Z + a

modulo m for some value of a. The derivative thereof is −π2 and therefore a
unit modulo m. Thus the polynomial is separable modulo m, which implies
that m is unramified in L.

Finally, we have π3 − π = π(π − 1)(π + 1) with π ̸∈ m and π ± 1 being
pairwise coprime modulo m. This implies that ordm(π

3 − π) ⩾ 3 if and only
if ordm(π ∓ 1) ⩾ 3 for some choice of sign.

(c) From (a) we know that (ρ) is unramified in L, and the primes of L above (ρ)
are in bijection with the irreducible factors of X3 − π modulo (ρ). Since the
residue field of (ρ) already contains µ3, either ρ splits completely in L or it
is inert. Moreover, the former case happens if and only if X3 − π has a root
in the residue field OK/(ρ). Thus the residue class of π is a cube in OK/(ρ)
if and only if (ρ) splits completely in L.

By global class field theory the latter is equivalent to the equality

[(1, . . . , 1, ρ, 1, . . .)] = 1 in IK
/
K× · NmL/K IL,

where the entry ρ is at the place (ρ). As the idele classes are taken mod-
ulo K×, this is equivalent to

[(ρ−1, . . . , ρ−1, 1, ρ−1, . . .)] = 1 in IK
/
K× · NmL/K IL,

where the entry 1 is at the place (ρ). By (a) and (b) the element ρ−1 is already
a local norm at all finite primes ̸= (π) of K. Since K is totally imaginary, the
element ρ−1 is also a local norm at the infinite prime of K. The condition is
therefore equivalent to

[(1, . . . , 1, ρ−1, 1, )] = 1 in IK
/
K× · NmL/K IL,

4



where the entry ρ−1 is at the place (π).

Now observe that the prime p := (π) of K is totally ramified in L with
the unique prime q := ( 3

√
π ) above it. Under the reciprocity isomorphism

IK/K
× · NmL/K IK ∼= Gal(L/K) the idele class in question is the image of

[ρ−1] ∈ K×
p /NmLq/Kp(L

×
q )

∼= Gal(Lq/Kp).

Since ρ is a local unit at p, the above condition is therefore equivalent to

ρ ∈ NmLq/Kp(O×
Lq
).

As Lq/Kp is totally ramified of degree 3, this is a subgroup of index 3 of O×
Kp
.

But as Kp has residue characteristic ̸= 3, every element of 1+pOKp is already
a third power. Since the multiplicative group of the residue field OK/(π) is
cyclic of order divisible by 3, it follows that (O×

Kp
)3 is the unique subgroup

of index 3 of O×
Kp
. Moreover ρ lies in it if and only if its residue class is a

third power in OK/(π). The condition is therefore equivalent to saying that
the residue class of ρ is a cube in OK/(π), as desired.
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