8 Theory of valuations

8.1 p-adic Numbers

Motivation:

Kronecker: “The natural numbers were given by God, but everything else is an invention of mankind.”

Goethe: “Mathematicians are like Frenchmen: whatever you say to them they translate into their own

language and forthwith it is something entirely different."
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Fix an integ

Fact 8.1.1: Any integer n > 0 can be written uniquely to base b as a finite sum

n = Z/aibi with (a; € {0,1,...,b—1})
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Here the last k digits determine n mod (b%), and the last k digits of the sum or product of two integers

n > 0 depend only on the last k£ digits of m and n.

Proposition 8.1.2: There is a natural injective ring homomorphism

7 — X(ZJV7), nr— (n+0b7),.
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Proposition 8.1.3: The image of this map is contained in the subring

= {(:ck +0°7), € X(Z/V*7) ‘ Yk > 0: 2 = 21 mod (bk)} .
N A — y \/

—: lim Z /"7

A D s -y S,
X, + sWZ — kb2 '

¢ ok
PRDS (Y
(20

Proposition 8.1.4: The following map is bijective:
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Observation 8.1.5: One computes with these systems (a;) by hand in the same way as with non-negative
integers to base b, except that the sequence of digits ... asaia¢ extends infinitely to the left. This is similar
to the decimal expansion of a real number, but in this case the sequence of digits is unique.

Convention 8.1.6: One writes an element in the image of the above map as a formal power series

One computes with such expressions in the same way as with formal power series, except that one has to
deal with the carry.
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Proposition 8.1.7: (a) For any coprime integers b, 0’ > 2 there is a natural ring isomorphism

b) Fi int > 0 there i tural ring i hi E
(b) For any integer r > ere is a natural ring isomorphism Cx .
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Throughout the following we therefore assume that b = p is a prime number.

Definition 8.1.8: The elements of Z, are called

p-adic integers. /

Proposition 8.1.9: A system of polynomials fi, ...

 fr € Z,[ X4, ..., X,,] has a common solution in (Z,)™

if and only if their residue classes modulo (p*) have a common solution in (Z/p*Z)™ for all k > 0.
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Proposition 8.1.10: (a) The set of units of Z, is Z; = Z, \ pZ,.

(b) The ideal (p) of Z, is the unique maximal ideal.

(c) Every non-zero ideal of Z,, is generated by p” for a unique integer r > 0.

(d) The ring Z, is a principal ideal domain. v o
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(d) Efﬂ?{f"‘Z./rL>° =~ 1#%o0 L\777,.
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