8 Theory of valuations
$8.1 \quad p$-adic Numbers
Motivation:
Kronecker: "The natural numbers were given by God, but everything else is an invention of mankind."
Goethe: "Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different."
Claim: $1+2+4+\ldots=\sum_{n \geq 0} 2^{n}$

$$
\begin{aligned}
&(1-2) \cdot \sum_{n \geq 0} 2^{n}=\sum_{n \geq 0}\left(2^{n}-2^{n+1}\right)=\sum_{n \geq 0}^{n} 2^{n}-\sum_{n \geq 0} 2^{n+1} \\
&=\sum_{n \geq 0} 2^{n}-\sum_{n \geq 1} 2^{n}=1 \\
& \Rightarrow \sum_{n \geq 0} 2^{n}=\frac{1}{-1}=-1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\quad 7752 \\
\cdots \quad 12813 \\
\hline-1565
\end{array} \\
& \begin{array}{r}
\ldots \quad 0000 \\
-\quad 11 \\
\hline \quad 9999
\end{array} \\
& \mathbb{Z} / 10^{n} \mathbb{Z}
\end{aligned}
$$

Fix an integ $b \geqslant 2$.
Fact 8.1.1: Any integer $n \geqslant 0$ can be written uniquely to base b as a finite sum

$$
n=\sum_{i \geqslant 0}^{\prime} a_{i} b^{i} \quad \text { with } \quad a_{i} \in\{0,1, \ldots, b-1\} .
$$

Here the last k digits determine $n \bmod \left(b^{k}\right)$, and the last k digits of the sum or product of two integers $m, n \geqslant 0$ depend only on the last k digits of m and n.

Proposition 8.1.2: There is a natural injective ring homomorphism

$$
\mathbb{Z} \longleftrightarrow \underset{k \geqslant 0}{\times\left(\mathbb{Z} / b^{k} \mathbb{Z}\right)}, \quad n \longmapsto \underline{\left(n+b^{k} \mathbb{Z}\right)_{k}}
$$

Pare:

$$
\begin{aligned}
& \text { mig homo } V \\
& \text { ing.: If } n \mapsto 0 \text { then } \forall k: b^{k} \mid n \Rightarrow n=0 \text {. }
\end{aligned}
$$

ged.

Proposition 8.1.3: The image of this map is contained in the subring

$$
\begin{aligned}
& \left.\mathbb{Z}_{b}\right)=\underbrace{\left.\left\{\underline{L}_{k}+b^{k} \mathbb{Z}\right)_{k} \in \underset{k \geqslant 0}{X}\left(\mathbb{Z} / b^{k} \mathbb{Z}\right) \mid \forall k \geqslant 0: x_{k} \equiv x_{k+1} \bmod \left(b^{k}\right)\right\}}_{=: \lim _{\boxed{Z}} / b^{k} \mathbb{Z}} .
\end{aligned}
$$

> 的 ch_{g} home.
> Proposition 8.1.4: The following map is bijective:

$$
\underset{k \geqslant 0}{X\{0,1, \ldots, b-1\}} \longrightarrow \mathbb{Z}_{b}, \quad\left(a_{i}\right)_{i} \longmapsto\left(\sum_{i=0}^{k-1} a_{i} b^{i}+b^{k} \mathbb{Z}\right)_{k}
$$

Panel: $a_{0,1}>a_{b-1}$ delaine all ave detente by the inge $=\mathbb{Z} / b^{k} \mathbb{C}$.

$$
\begin{aligned}
& \Rightarrow \text { infective. }
\end{aligned}
$$

Observation 8.1.5: One computes with these systems $\left(a_{i}\right)$ by hand in the same way as with non-negative integers to base b, except that the sequence of digits $\ldots a_{2} a_{1} a_{0}$ extends infinitely to the left. This is similar to the decimal expansion of a real number, but in this case the sequence of digits is unique.

Convention 8.1.6: One writes an element in the image of the above map as a formal power series

$$
\sum_{i \geqslant 0} a_{i} b^{i} .
$$

One computes with such expressions in the same way as with formal power series, except that one has to deal with the carry.

Proposition 8.1.7: (a) For any coprime integers $b, b^{\prime} \geqslant 2$ there is a natural ring isomorphism

$$
\mathbb{Z}_{b b^{\prime}} \cong \mathbb{Z}_{b} \times \mathbb{Z}_{b^{\prime}} .
$$

(b) For any integer $r \geqslant 0$ there is a natural ring isomorphism

$$
\mathbb{Z}_{b^{r}} \cong \mathbb{Z}_{b}
$$

Example:
mo reduces to $b=$ price.
Poof: (a)

$$
\begin{aligned}
& \text { - } \mathbb{C}\left(\left(b^{\prime}\right)^{k} \mathbb{D} \sim \mathbb{Z} / b^{2} \mathbb{\mathbb { C }} \times \mathbb{Z} / b^{\prime k} \mathbb{\mathbb { C }}(\cdot, \cdot)\right. \\
& \hat{\imath} \quad / 1 \quad \hat{\mathrm{~T}} \quad \hat{\mathrm{~T}} \quad \text { I } \\
& \mathbb{Z} /\left(66^{2}\right)^{k+1} \mathbb{Z} \xrightarrow{\sim} b^{6+1} \mathbb{Z} \times \mathbb{Z} / b^{12 x)} \mathbb{Z}(\cdots)
\end{aligned}
$$

(b)
$5^{2^{n}} \bmod 10^{L}$ as $5^{2^{n}}$ and J_{L}^{ε} gan to 0 .
Ged
 $\Rightarrow 5^{2^{2}} \operatorname{mad}\left(2^{2}\right)=\overline{1}$ fo de $r \geq k-1$. Thin $5^{2^{2}} \rightarrow 1$ in \mathbb{Z}_{2}.

Throughout the following we therefore assume that $b=p$ is a prime number.
Definition 8.1.8: The elements of \mathbb{Z}_{p} are called p-adic integers.
Proposition 8.1.9: A system of polynomials $f_{1}, \ldots, f_{r} \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{m}\right]$ has a common solution in $\left(\mathbb{Z}_{p}\right)^{m}$

Pupal: " \Rightarrow " V

Am e $\forall: S_{\xi} \neq \varnothing$.

$$
\forall q^{\prime} \geq \varepsilon: N_{p}: S_{l^{\prime}} \xrightarrow{k} \frac{\pi_{k}^{k^{\prime \prime}}}{} S_{k},\left(\bar{x}_{1}, \bar{x}_{m}\right) \sim\left(\bar{x}_{1} \text { and } p^{k}, \ldots\right)
$$

Each S_{r} is Rive.

$$
\begin{aligned}
& \Rightarrow T_{\varepsilon}:=\bigcap_{\varepsilon^{\prime} \geqslant k} a_{k}^{u_{\varepsilon}^{\prime}}\left(S_{\varepsilon^{\prime}}\right)^{\text {five }} \text { nears. } \\
& \bar{u}_{\varepsilon}^{k+1}\left(T_{\varepsilon+1}\right)=\tau_{\varepsilon} \\
& S_{k+1} \quad \partial \pi_{k}^{k+1}\left(S_{k+2}\right) 0 \text {. } \\
& t_{k}=\left(x_{1, k}+p^{k} \sum,>x_{m, k}+p^{i} D\right)
\end{aligned}
$$

Clung $t_{k} \in T_{k} \quad \operatorname{con}$ tank $\bar{u}_{k}^{b_{k+1}}\left(t_{k+1}\right)=t_{k}$.
$\cdots \forall:=\left(x_{i}, \ell+p^{k} \mathbb{Z}\right)_{\varepsilon \geq 0}^{x} \in \mathbb{P}_{p}$.

$$
x_{i}=1 \times ;, \tan J \in 0 \text { fed. }
$$

Proposition 8.1.10: (a) The set of units of \mathbb{Z}_{p} is $\mathbb{Z}_{p}^{\times}=\mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$.
(b) The ideal (p) of \mathbb{Z}_{p} is the unique maximal ideal.
(c) Every non-zero ideal of \mathbb{Z}_{p} is generated by p^{r} for a unique integer $r \geqslant 0$.
(d) The ring \mathbb{Z}_{p} is a principal ideal domain.

Pron: (a) $\underline{x}=\sum_{i \geq 0}^{"} x_{i} p^{i "} \Rightarrow p \underline{x}=" \sum_{i \geq 0} k_{i} p^{i+1} "=\sum_{i \geq 1} x_{i-1} p^{i "}$

$$
\Rightarrow p e_{p}^{00}=\left\{" \sum x_{i} i^{i "} \mid x_{0}=0\right\} .
$$

Then $\underline{x}={ }^{4} \sum x_{i} p^{i n}$ with $x_{0} \neq 0 \Rightarrow \forall \underline{0} 0: \sum_{i=0}^{k-1} x_{i} p^{i} p_{p} \mathbb{Q} \in\left(\left.\mathbb{D}\right|_{p} ^{k} \mathbb{Z}\right)^{x}$.
\therefore.e. the equal $x \cdot Y-1=0$ has a raki in $\mathbb{C} / p^{k} \mathbb{C}$ fo de k.
\Rightarrow it han arhat in C_{p}.
(b) $\left.\left.\mathbb{Z}_{p}\right|_{N L} \mathbb{Z}_{p} \leftarrow \sim\{0, \ldots, p-1\}\right] \Rightarrow p \mathbb{Z}_{p}$ wax. iced.

$$
\Rightarrow m=p \mathbb{Z}_{p}
$$

wiki ${ }^{j}:=\operatorname{mi}\left\{i \geq 0 \mid x_{i} \neq 0\right\}$ minine.
Th $\underline{u}:=" \sum_{i \geq 0} x_{i+j} r^{i} " \in \mathbb{Q}_{p}^{x}$.

(d) $P_{p} \rightarrow 2 / p^{2} \mathbb{T}$. ar $\varepsilon>0 \Rightarrow 1 * 0$ in P_{p}.

$$
\begin{aligned}
& \underline{x}, y \in \mathbb{Z}_{p} \backslash \operatorname{So\} } \Rightarrow \quad \underline{x}=p_{k}^{j} \cdot \underline{\text { ar }} \dot{j}, \varepsilon \geq 0 \\
& \underline{y}=p^{k} \cdot \underline{n} \quad \underline{u} \in \in \mathbb{Z}_{p}^{k} \\
& \Rightarrow \underline{k} \underline{y}=\underbrace{p^{j+k}}_{x_{0}} \underbrace{\underline{u} \cdot \underline{u}}_{\in \partial_{p}^{k}}
\end{aligned}
$$

beam it is unt in wad $p^{\text {jolkt1 }} \mathbb{Z}$,

