Reminder: Fix a prime number p. The ring of p-adic integers is the subbing

$$
\mathbb{Z}_{p}:=\underbrace{\left\{x_{k}+p^{k} \mathbb{Z}\right)_{k} \in \underset{\underbrace{}_{k \geqslant 0}}{X}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right) \mid \forall k \geqslant 0: x_{k} \equiv x_{k+1} \bmod \left(p^{k}\right)\}}_{=:\left(\underset{k}{(\mathrm{~m}} \mathbb{Z} / p^{k} \mathbb{Z}\right.} .
$$

The following map is bijective:

Proposition 8.1.10: (a) The set of units of \mathbb{Z}_{p} is $\mathbb{Z}_{p}^{\times}=\mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$.
(b) The ideal (p) of \mathbb{Z}_{p} is the unique maximal ideal.
(c) Every non-zero ideal of \mathbb{Z}_{p} is generated by p^{r} for a unique integer $r \geqslant 0$.
(d) The ring \mathbb{Z}_{p} is a principal ideal domain.

Definition 8.1.11: The ring of formal Laurent series with finite principal part

$$
\mathbb{Q}_{p}:=\left\{\begin{array}{l|l}
\sum_{i \in \mathbb{Z}} a_{i} p^{i} & \begin{array}{l}
\text { all } \frac{a_{i} \in\{0,1, \ldots, p-1\}}{\text { and } \underline{a_{i}=0 \text { for all } i \ll 0}}
\end{array}
\end{array}\right\}
$$

with the addition and multiplication defined as above. The elements of \mathbb{Q}_{p} are called (rational) p-adic numbers.

Proposition 8.1.12: We have $\mathbb{Q}_{p}=\mathbb{Z}_{p}\left[\frac{1}{p}\right]=\operatorname{Quot}\left(\mathbb{Z}_{p}\right)$.
PIP: $Q_{p}=\bigcup_{n \geq 0} \frac{1}{p^{k}} \cdot \mathbb{Q}_{p}$ with $\frac{1}{p^{i}} \mathbb{R}_{p}=\left\{\sum_{i \geq-n} a_{i} p^{i} \mid\right.$

$$
\Rightarrow a_{p}=\mathbb{T}_{p}\left[\frac{1}{p}\right] .
$$

Remark 8.1.13: Again the digits of a rational p-adic number are uniquely determined, and one computes with them by hand in the same way as with real numbers by writing them with a decimal point as $\ldots a_{2} a_{1} a_{0} . a_{-1} \ldots a_{k}$ for some $k \ll 0$.

Remark 8.1.14: We have $\operatorname{card}\left(\mathbb{Q}_{p}\right)=\operatorname{card}\left(\mathbb{Z}_{p}\right)=\operatorname{card}(\mathbb{R})$.

$$
\begin{aligned}
& \left|e_{p}\right|=p^{\omega}=|\mathbb{R}| . \\
& \left|Q_{p}\right| \leq\left|a_{p}\right| \leq \sum_{n \geq 0}\left|\frac{1}{p^{n}} Q_{p}\right|=\omega \cdot p^{\omega}=p^{\omega} .
\end{aligned}
$$

Proposition 8.1.15: We have
(a) $\mathbb{Q}_{p}^{\times}=p^{\mathbb{Z}} \times \mathbb{Z}_{p}^{\times} \cdot \mathcal{} \longleftarrow$ as abreve. $\quad \mu\left(\mathbb{Q}_{p}\right)=\left\{u \in \mathbb{Q}_{p}^{x} \mid \exists u \geq 1: u^{n}=1\right\}$.

(d) The second factor in (c) is isomorphic to \mathbb{Z}_{p}.

Clai: p oold $\Rightarrow[1+p]$ geven $\frac{1+p \mathbb{2}}{p^{6} \mathbb{Z}}$
Prof: $[1+a p] \in \mathbb{R} r^{k} \mathbb{\mathbb { Z }}, a \in \mathbb{\mathbb { Z }} ; \varepsilon \geq 3$

$$
\begin{aligned}
& \left(1+a_{p}\right)^{p}=\left[\sum_{i=0}^{p}\binom{p}{i} a^{i} p^{i}\right]=\left[1+a_{p}^{2}+\sum_{i \geq 2} \cdots\right] \\
& i \geq 2 \Rightarrow p^{3} \mid\left(p_{i}\right) \cdot p^{i} \text { beamn } p>2 \text {. } \\
& \left.=\left[1+a p^{2} \cdot \frac{(1+\text { soveknj dirible } b p}{h} p\right)\right]
\end{aligned}
$$

Similes: $\left(1+4 \mathbb{T}_{2}, \cdot\right) \cong \mathbb{R}_{2}$.

$$
\begin{aligned}
& (1+2 a)^{2}=1+4 a+4 a^{2} \\
& (1+4 a)^{2}=1+8 a+16 a^{2}=1+8 a(1+2 a)
\end{aligned}
$$

$$
\left(\mathbb{Z} / 2^{4} Q\right)^{k}=\{ \pm 1\} \times \frac{1+4 \mathbb{D}^{6} \geq 2}{2^{6} 己}
$$

8.2 Valuations

Definition 8.2.1: A (non-trivial rank 1) valuation on a field K is a map

$$
K \rightarrow \mathbb{R} \cup\{\infty\}, \quad x \mapsto v(x)
$$

with the properties
(a) For any $x \in K$ we have $v(x)=\infty$ if and only if $x=0$.
(b) For any $x, y \in K$ we have $v(x y)=v(x)+v(y)$.

(c) For any $x, y \in K$ we have $v(x+y) \geqslant \min \{v(x), v(y)\}$.
(d) There exists $x \in K$ with $v(x) \notin\{0, \infty\}$.

Remark 8.2.2: The map with $\underline{v(0)={ }^{\infty}}$ and $v(x)=0$ for all $x \neq 0$ is called the trivial valuation. Some of the results below also hold for it, and sometimes one allows it as well, but we exclude it without further mention.

Definition 8.2.3: (a) A valuation v is called discrete if $v\left(K^{\times}\right)$is discrete in $\mathbb{R} . \Rightarrow$ latice $\Rightarrow v\left(k^{x}\right)=\mathbb{C} \cdot \xi$
(b) A discrete valuation v is called normalized if $v\left(K^{\times}\right)=\mathbb{Z}$.
(c) Two valuations v and v^{\prime} are called equivalent if $v^{\prime}=c \cdot v$ for some constant $\left.c>0 \Rightarrow v^{\prime}\left(\boldsymbol{K}^{\prime \prime}\right)=\mathbb{Z} \cdot c\right\}$.

Proposition 8.2.4: Every discrete valuation is equivalent to a unique normalized valuation.

$$
\text { TTale } c=\xi^{-1} \text {. }
$$

Proposition 8.2.5: Let A be a Dedekind ring with quotient field K, and let \mathfrak{p} be a maximal ideal of A. For any $x \in K^{\times}$let $\operatorname{ord}_{\mathfrak{p}}(x)$ denote the exponent of \mathfrak{p} in the prime factorization of the fractional ideal (x), and set $\overline{\operatorname{ord}_{\mathfrak{p}}(0)}:=\infty$. Then $\operatorname{ord}_{\mathfrak{p}}$ is a normalized discrete valuation on K.
Pull: (a) V
(b) $\quad \mathrm{and}_{g}(x y)=\mathrm{arl}_{g}(x)+\mathrm{arl}_{g}(y)$

$$
\left.\begin{array}{l}
(x)=\Pi v_{7}^{r_{y}} \\
(y)=\Pi \sigma^{r_{y}}
\end{array}\right] \Rightarrow(x y)=\Pi v_{7}^{r_{y}+\mu_{7}} .
$$

(c) ont $_{8}(x+y) \geq \min \left\{a a_{3}(x), a d_{3}(y)\right\}$.
(d) Fin $x \in g \not g^{2}$ we lin $n d_{g}(x)=1$ qed Ar $x, y \in A$ by $g<d$. Cunaixto $x, y \in K^{k}$
Examples 8.2.6: Consider a field k and a prime p. b_{7} divides $b \quad z \in A^{x}$.
(a) The polynomial ring $A=k[t]$ with $K=k(t)$ and $\mathfrak{p}=(t-a)$ for some $a \in A$.
(b) The field $\underline{K=k(t)}$ with $\underline{v(f / g)}:=\underline{\operatorname{deg}(g)-\operatorname{deg}(f)}$ for any $\underline{f, g \in k[t] \backslash\{0\}}$.
(c) The power series ring $A=k[[t]]$ with $\underline{K=k((t))}$ and $\mathfrak{p}=(t)$. Exec ain.
(d) The ring $\underline{A=\mathbb{Z}}$ with $K=\mathbb{Q}$ and $\underline{p}=(p)$.
(e) The ring $A=\mathbb{Z}_{p}$ with $K=\mathbb{Q}_{p}$ and $\mathfrak{p}=(p)$.

$$
\begin{aligned}
& A^{\prime}:=\frac{k}{1}\left[\begin{array}{l}
1 \\
t
\end{array}\right] \Rightarrow Q_{\text {ut }}\left(A^{\prime}\right)=L(t) \\
& g^{\prime}=\left(\frac{1}{t}\right) \Rightarrow \operatorname{oun}_{g^{\prime}}=v \quad \text { 的 }(\Delta)
\end{aligned}
$$

Basic Properties 8.2.7: For any valuation v on K we have:
(a) For any $x \in K^{\times}$and $n \in \mathbb{Z}$ we have $v\left(x^{n}\right)=n \cdot v\left({ }^{\boldsymbol{x}}\right)$.
(b) For any root of unity $\zeta \in K$ we have $v(\zeta)=0$. $\longleftarrow J^{n}=1, n \geq 1 \Rightarrow n \cdot v(J)=v\left(J^{n}\right)$

$$
=v(1)=0
$$

(c) For any $x \in K$ and $n \in \mathbb{Z}$ we have $v(n x) \frac{\geqslant}{} v(x)$.

$$
v(y)=0 \text {. }
$$

(d) For any $x, y \in K$ we have $v(x+y)=\min \{v(x), v(y)\}$ if $v(x) \neq v(y)$.

2 pules $v(-1)=0$

$$
\begin{aligned}
\Rightarrow v(-x)= & v(-1)+v(x) \\
& =v(x) .
\end{aligned}
$$

$n \geq 1$: inchelim n :

$$
\begin{aligned}
& v((n+1) x)=v(n x+x|\geqslant \min | v(n x), v(x)\} \geqslant v(x) \\
& n=0: v(0)=\infty \geq v(x) \\
& n<0: v(n x)=v(-n x) \\
& \text { Sucres } v(x+y)>\min \{v(x), v(y)\} \text {. } \\
& \Rightarrow v(y)=v((x+y)+(-x)) \\
& \geqq \min \{v(x+y), \sim(-x)\} \\
& =\min \{\sim(x \neq y), u(x)\} \\
& =u(x) \\
& \left.\begin{array}{l}
\rightarrow v(y) \geq u|x| \\
\text { Sinilaly v }(x \mid \geq w(y) .
\end{array}\right] \rightarrow v(x)=v(y \mid
\end{aligned}
$$

Proposition-Definition 8.2.8: For any valuation v on K we have:
\checkmark (a) The subset $\mathcal{O}_{v}:=\{x \in K: v(x) \geqslant 0\}$ is a subring, called the valuation ring associated to v.
\mathcal{A} (b) We have $\operatorname{Quot}\left(\mathcal{O}_{v}\right)=K$.
/(c) We have $\mathcal{O}_{v}^{\times}:=\{x \in K: v(x)=\mathbf{0}\}$.
(d) The subset $\mathfrak{m}_{v}:=\{x \in K: v(x)>0\}$ is the unique maximal ideal of \mathcal{O}_{v}.
(e) If the valuation is discrete, then \mathcal{O}_{v} is a principal ideal domain.

A-
(a) $G_{w} \geqslant 0,1$, clond ender t...
(b) $\forall x \in K^{x}: \quad v(x) \geq 0 \Rightarrow x \in O_{v} \cup$

$$
v(x) \geqslant 0 \Rightarrow x \in 0_{0} \Rightarrow \frac{1}{x} \in O_{u} . \Rightarrow x \in Q_{n}+\left(O_{v}\right) .
$$

(c) $x \in G_{v}^{x} \Leftrightarrow\left|\begin{array}{r}v(x) \geq 0 \\ \sim u\left(\left.\frac{1}{x} \right\rvert\, \geq 0\right. \\ v\left\langle\frac{\widehat{u}}{x}\right| \leq 0\end{array}\right| \Leftrightarrow v(x)=0$.
(d) μ_{v} is a ided.
$G_{v} \backslash \mu_{v}=O_{v}^{x} \Rightarrow m \times x i n d$.
$m^{\prime} \subset O_{C} \Rightarrow$ wak. idul $\Rightarrow \min ^{\prime} n G_{u}^{k}=\phi \Rightarrow \sin ^{\prime} \subset \mu_{v} \Rightarrow m^{\prime}=m_{v}$.
(a) WLOG v nomdited. Pick $\bar{u} \in K$ with $u(\pi)=1$.
$K^{x}=\pi^{\mathbb{Z}} \times G_{v}^{x} \Rightarrow$ en mano idel $f O_{v}:\left(\pi^{n}\right)$ for migne $n \geq 0$.
q-ed.

