Reminder: Fix a prime number p. The ring of p-adic integers is the subring

$$\mathbb{Z}_p := \underbrace{\left\{ (x_k + p^k \mathbb{Z})_k \in \underbrace{\bigotimes_{k \ge 0}}_{k \ge 0} | \forall k \ge 0 \colon x_k \equiv x_{k+1} \mod (p^k) \right\}}_{=: \varprojlim_k \mathbb{Z}/p^k \mathbb{Z}}.$$

The following map is bijective:

$$\underset{k \ge 0}{\times} \{0, 1, \dots, p-1\} \longrightarrow \mathbb{Z}_p, \quad (a_i)_i \longmapsto \left(\sum_{i=0}^{k-1} a_i p^i + p^k \mathbb{Z}\right)_k.$$

ai

Proposition 8.1.10: (a) The set of units of \mathbb{Z}_p is $\mathbb{Z}_p^{\times} = \mathbb{Z}_p \setminus p\mathbb{Z}_p$.

- (b) The ideal (p) of \mathbb{Z}_p is the unique maximal ideal.
- (c) Every non-zero ideal of \mathbb{Z}_p is generated by p^r for a unique integer $r \ge 0$.
- (d) The ring \mathbb{Z}_p is a principal ideal domain.

$$1 + 2 + 4 + 8 + \dots = \sum_{\substack{i \ge 0 \\ i \ge 0}} 2^{i} \in \mathbb{Z}_{2}$$

$$(1 - 2) \cdot \sum_{\substack{i \ge 0 \\ i \ge 0}} 2^{i} = \sum_{\substack{i \ge 0 \\ i \ge 0}} 2^{i + i} = \sum_{\substack{i \ge 0 \\ i \ge 0}} 2^{i} - \sum_{\substack{i \ge 0 \\ i \ge 0}} 2^{i} = 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

Definition 8.1.11: The ring of formal Laurent series with finite principal part

$$\mathbb{Q}_p := \left\{ \left| \sum_{i \in \mathbb{Z}} a_i p^i \right| \left| \begin{array}{c} \text{all } a_i \in \{0, 1, \dots, p-1\} \\ \text{and } a_i = 0 \text{ for all } i \ll 0 \end{array} \right. \right\}$$

with the addition and multiplication defined as above. The elements of \mathbb{Q}_p are called *(rational) p-adic* numbers.

Proposition 8.1.12: We have $\mathbb{Q}_p = \mathbb{Z}_p[\frac{1}{p}] = \operatorname{Quot}(\mathbb{Z}_p)$. $\begin{array}{c} \lim_{n \to \infty} \vdots & \lim_{p \to \infty} \vdots & \lim_{p$

 $\ldots a_2 a_1 a_0 a_{-1} \ldots a_k$ for some $k \ll 0$.

Remark 8.1.14: We have $\operatorname{card}(\mathbb{Q}_p) = \operatorname{card}(\mathbb{Z}_p) = \operatorname{card}(\mathbb{R})$.

$$\begin{aligned} |\mathcal{Z}_{p}| &= p^{\omega} = |\mathcal{I}_{P}|. \\ |\mathcal{Z}_{p}| &\leq |\mathcal{Q}_{p}| \leq \sum_{n \geq 0} |\frac{1}{p^{n}}\mathcal{Z}_{p}| = \omega \cdot p^{\omega} = p^{\omega}. \end{aligned}$$

Proposition 8.1.15: We have
(a)
$$\mathbb{Q}_{p}^{\times} = p^{\mathbb{Z}} \times \mathbb{Z}_{p}^{\times}$$
, (c) as also,
(b) $\mu(\mathbb{Q}_{p}) = \left\{ \frac{\mu_{p-1} \text{ if } p > 2}{\mu_{2}}, \right\}$,
(c) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{\mu_{p-1} \times (1 + p\mathbb{Z}_{p}) \text{ if } p > 2}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(d) The second factor in (c) is isomorphic to \mathbb{Z}_{p} ,
(d) The second factor in (c) is isomorphic to \mathbb{Z}_{p} ,
(e) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(f) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(f) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 4\mathbb{Z}_{2})}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p^{2}}{\mu_{2} \times (1 + 2p)}, \right\}$,
(g) $\mathbb{Z}_{p}^{\times} = \left\{ \frac{1 + p$

 $(\mathbb{C}/2^{L}\mathbb{C})^{k} = \{\pm 1\} \times \frac{1+4\mathbb{C}}{2^{L}\mathbb{C}}$ Similely: (1+422,.) ≈ 22. $(1+2a)^{2} = 1+4a+4a^{2}$ $(1+4a)^{2} = 1+8a+16a^{2} = 1+8a(1+2a/2)$ (1+ 2a) 2 = 1+4a+4a2

8.2 Valuations

Definition 8.2.1: A *(non-trivial rank 1) valuation* on a field K is a map $K \to \mathbb{R} \cup \{\infty\}, x \mapsto v(x)$

with the properties

(a) For any
$$x \in K$$
 we have $v(x) = \infty$ if and only if $x = 0$.

- (b) For any $x, y \in K$ we have v(xy) = v(x) + v(y). (\cdots, v, K)
- (c) For any $x, y \in K$ we have $v(x+y) \ge \min\{v(x), v(y)\}$.
- (d) There exists $x \in K$ with $v(x) \notin \{0, \infty\}$.

Remark 8.2.2: The map with $v(0) = \overset{\frown}{a}$ and v(x) = 0 for all $x \neq 0$ is called the *trivial valuation*. Some of the results below also hold for it, and sometimes one allows it as well, but we exclude it without further complete by (A) =0 lattice => v(12) = 2.5 for \$>0. mention.

Definition 8.2.3: (a) A valuation v is called *discrete* if $v(K^{\times})$ is discrete in \mathbb{R} .

- (b) A discrete valuation v is called *normalized* if $v(K^{\times}) = \mathbb{Z}$.
- (c) Two valuations v and v' are called *equivalent* if $v' = c \cdot v$ for some constant c > 0.

Proposition 8.2.4: Every discrete valuation is equivalent to a unique normalized valuation.

Tale 1= 3

Proposition 8.2.5: Let <u>A</u> be a Dedekind ring with quotient field <u>K</u>, and let \mathfrak{p} be a maximal ideal of A. For any $x \in K^{\times}$ let $\operatorname{ord}_{\mathfrak{p}}(x)$ denote the exponent of \mathfrak{p} in the prime factorization of the fractional ideal (x), and set $\operatorname{ord}_{\mathfrak{p}}(0) := \infty$. Then $\operatorname{ord}_{\mathfrak{p}}$ is a normalized discrete valuation on <u>K</u>.

Basic Properties 8.2.7: For any valuation
$$v$$
 on K we have:
(a) For any $x \in K^{\times}$ and $n \in \mathbb{Z}$ we have $v(x^{n}) = n \cdot v(\mathbf{a})$.
(b) For any root of unity $\zeta \in K$ we have $v(x) = n \cdot v(\mathbf{a})$.
(c) For any $x \in K$ and $n \in \mathbb{Z}$ we have $v(nx) \neq v(x)$.
(d) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(e) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(f) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(g) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(h) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(h) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(h) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(h) For any $x, y \in K$ we have $v(x + y) = \min\{v(x), v(y)\}$ if $v(x) \neq v(y)$.
(h) $v(x + y) = u(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y) = u(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y) = u(x + y)$.
(h) $v(x + y)$

Proposition-Definition 8.2.8: For any valuation v on K we have:

(a) The subset $\mathcal{O}_v := \{x \in K : v(x) \ge 0\}$ is a subring, called the *valuation ring* associated to v. (b) We have $\operatorname{Quot}(\mathcal{O}_v) = K$. (c) We have $\mathcal{O}_v^{\times} := \{x \in K : v(x) = \mathbf{0}\}.$ \checkmark (d) The subset $\mathfrak{m}_v := \{x \in K : v(x) > 0\}$ is the unique maximal ideal of \mathcal{O}_v . (e) If the valuation is discrete, then \mathcal{O}_v is a principal ideal domain. ſ_f. [a] (0, 20, 1, clark order + , ... (b) VKEK : ~(x)=0 = KEOUV $v(x|c 0 \Rightarrow v(\frac{1}{x}) > 0 \Rightarrow \frac{1}{x} \in \mathcal{O}_{v} \Rightarrow x \in \mathcal{O}_{u+}(\mathcal{O}_{v}).$ (c) $x \in G_{\nu}^{\times} \hookrightarrow \left[\nu(x) \ge 0 \land \nu(\frac{1}{\mu}) \ge 0 \right]$ (c) $\nu(x) \ge 0$. (d) min is a ideal Guim = O' I merical. m'clu ay mak ideal to mandy = p m'cm, sm'=m. (e) whole v non ditad. Pick to Elk with w(to)= 1 KX = T × G , = en un o idal of Or is (T") for migne n = 0.