Reminder: Fix a prime number p. The ring of p-adic integers is the subring 2 /,o“a
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Proposition 8.1.10: (a) The set of units of Z,\s Z) = Z), \ pZ,.
(b) The ideal (p) of Z, is the unique maximal ideal.
(c) Every non-zero ideal of Z,, is generated by p” for a unique integer r > 0.
(d) The ring Z, is a principal ideal domain.
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Definition 8.1.11: The ring of formal Laurent series with finite principal part

;| alla; €{0,1,...,p—1
Qp = {Zaip a: € { £ }}

and q; =0 for all s < 0
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with the addition and multiplication defined as above. The elements of Q, are called (rational) p-adic
numbers. A

Proposition 8.1.12: We have Q, = Zp[zl)] = Quot(Z,).
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Remark 8.1.13: Again the digits of a rational p-adic number are uniquely determined, and one computes
with them by hand in the same way as with real numbers by writing them with a decimal point as

.. Q9a109.a_1 . . . a for some k < 0.

Remark 8.1.14: We have card(Q,) = card(Z,) = card(R).
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Proposition 8.1.15: We have | >9 =1
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8.2 Valuations

Definition 8.2.1: A (non-trivial rank 1) valuation on a field K is a map

K —-RU{o0}, = v(x)

with the properties
(a) For any x € K we have v(z) = oo if and only if x = 0. /
x
(b) For any z,y € K we have v(zy) = v(z) + v(y). ¢~ U W —— | C WA
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(c) For any z,y € K we have v(x +y) = min{v(x),v(y)}.
(d) There exists z € K with v(x) € {0, 00}.

Remark 8.2.2: The map with v(0) = G and v(z) = 0 for all  # 0 is called the trivial valuation. Some of
the results below also hold for it, and sometimes one allows it as well, but we exclude it without further

mention. A_Jb Sy - (4
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Definition 8.2.3: (a) A valuation v is called discrete if U(KX) is discrete in ]R = Lokice 2 o(i)22 &

P E50.

(b) A discrete valuation v is called normalized if v(K*) = Z. l

(c) Two valuations v and v’ are called equivalent if v' = ¢ - v for some constant ¢ > 0. 4 U_'( 1 “=2- cF

Proposition 8.2.4: Every discrete valuation is equivalent to a unique normalized valuation.
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Proposition 8.2.5: Let A be a Dedekind ring with quotient field K, and let p be a maximal ideal of A.
For any x € K let ord,(z) denote the exponent of p in the prime factorization of the fractional ideal (),

and set ord,(0) := co. Then ord, is a normalized discrete valuation on K.
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Examples 8.2.6: Consider a __ﬁ_eld k and a prime p. L; ‘ % fe 4 x

(a) The polynomial ring A = k[t] with K = k(¢) and p = (t — a) for some a € A.
(b) The field K:—k(t) with v(f/g) := deg(g) — deg(f) for any f,g € k[t] . {0}.
(c¢) The power series ring A = k[[t]] with K = k((t)) and p = (¢).
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(e) The ring A =7, with K =Q, and p = (p).
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Basic Properties 8.2.7: For any valuation v on K we have:

(a) For any x € K* and n € Z we have v(z") =n - v(:) / N
- .y \SK:’I w21 = “‘Uhr]:U(U

(b) For any root of unity ( € K we have v(¢) =0. e—— . =0 (”J =0
7(c) For any « € K and n € Z we have v(nx)%v(x) = o (N0,
(d) For any z,y € K we have v(z 4+ y) = min{v(z),v(y)} if v(z) # v(y). 2 pebite p(1)= 0
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Proposition-Definition 8.2.8: For any valuation v on K we have:
k/(a) The subset O, :={z € K jv(z) > Og is a subring, called the wvaluation ring associated to v.
/(b) We have Quot(0,) = K. |
/(c) We have O) := {z € K : v(z) =0}.
)
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/(d) The subset m, := {z € K : v(z) > 0} is the unique maximal ideal of O,.

(e) If the valuation is discrete, then O, is a principal ideal domain.
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