Reminder:
Consider a Dedekind reg A with quotient field K and a maximal ideal \mathfrak{p}. Pick an element $\pi \in \mathfrak{p} \backslash \mathfrak{p}^{2}$.
Definition 8.3.1: The completion of A with respect to \mathfrak{p} is the subring

It is equipped with a natural ring homomorphism

$$
i: A \longrightarrow A_{\mathfrak{p}}, x \mapsto\left(x+\mathfrak{p}^{k}\right)_{k}
$$

Proposition 8.3.4: (a) The set of units of $A_{\mathfrak{p}}$ is $A_{\mathfrak{p}}^{\times}=A_{\mathfrak{p}} \backslash \pi A_{\mathfrak{p}}$.
(b) The idea $\mathfrak{m}_{\mathfrak{p}}:=(\pi)$ of $A_{\mathfrak{p}}$ is the unique maximal ideal.
(c) Every nonzero ideal of $A_{\mathfrak{p}}$ is equal to $\mathfrak{m}_{\mathfrak{p}}^{r}$ for a unique integer $r \geqslant 0$.
(d) The ring A_{p} is. a principal ideal domain. \Rightarrow Dedekind.
(e) It is the valuation ring for the discrete valuation $\operatorname{ord}_{\mathfrak{m}_{\mathfrak{p}}}$ on the field $K_{\mathfrak{p}}:=A_{\mathfrak{p}}\left[\pi^{-1}\right]$.
(f) The natural homomorphism $i: A \rightarrow A_{\mathfrak{p}}$ is injective.
(g) It therefore induces an injective homomorphism $i: K \hookrightarrow K_{p}$.
(h) For any $x \in K$ we have $\operatorname{ord}_{\mathfrak{p}}(x)=\operatorname{ord}_{\mathfrak{m}_{\mathfrak{p}}}(i(x))$.

Definition 8.3.5: A normalized discrete valuation v on a field K is called complete if the natural homomorphism $i: K \hookrightarrow K_{\mathfrak{m}_{v}}$ is an isomorphism.

Proposition 8.3.6: The valuation $\operatorname{ord}_{\mathfrak{m}_{\mathfrak{p}}}$ on the completion $K_{\mathfrak{p}}$ is complete.
Pupa: To me: $A_{1 f} \rightarrow\left(A_{g}\right)_{m_{g}}$ is an ion.

$$
\begin{aligned}
& \text { Con: } A_{f} \rightarrow A / /^{n} \text { Mug and }
\end{aligned}
$$

$$
\begin{aligned}
& \mu=1: A_{z} / \operatorname{mong}_{g} \equiv A / f .
\end{aligned}
$$

u atilors: Each sole is on edens of u espies thud.
Example 8.3.7: The valuations on $\frac{k((t))}{\digamma}$ and on \mathbb{Q}_{p} are complete.

$$
k[t]_{(t)}=k[[t]]
$$

8.4 Absolute Values

Definition 8.4.1: A (nontrivial) absolute value (or norm) on a field K is a map

$$
\underline{K \rightarrow \mathbb{R}^{\geq 0}}, \quad x \mapsto|x|
$$

with the properties

$$
\frac{\text { valudir }}{v: K \rightarrow \mathbb{R}_{0}\{\infty\}}
$$

(a) For any $x \in K$ we have $|x|=0$ if and only if $x=0$.
(b) For any $x, y \in K$ we have $|x y|=|x| \cdot|y|$. $\quad|x+y| \leqslant$

$$
\text { (b) } v(x y)=v(x) \leftarrow v(y)
$$

(c) For any $x, y \in K$ we have $|x+y| \leqslant|x|+|y|$.

$$
\text { (c) } v(x+y) \geqslant \min \{v(x \mid, v(y)\}
$$

(d) There exists $x \in K$ with $|x| \notin\{0,1\}$.

$$
\text { (a) } w(x)=\infty \text { if } x=0
$$

$$
\text { (d) } \exists x \in K: u(x / \neq 0, \infty
$$

Remark 8.4.2: The map with $|0|=0$ and $|x|=1$ for all $x \neq 0$ is called the trivial absolute value. Some of the results below also hold for it, and sometimes one allows it as well, but we exclude it without further mention.

Fact: For any valuation v on K and any constant $0<c<1$ the ma $|x|:=c^{v(x)}$ is an absolute value on K.
Caution 8.4.3: Don't confuse an absolute value with a valuation, as many do. ()
Example 8.4.4: The usual absolute value on \mathbb{R} or \mathbb{C} or any subfield thereof.

Proposition 8.4.5: For any absolute value $\|$ and any real number $0<s \leqslant 1$ the map $\left|\left.\right|^{s}\right.$ is also an absolute value.

Proposition 8.4.6: Any absolute value $|\mid$ on a field K turns K into a metric space with the metric $\underline{\underline{d(x, y)}:=|x-y| .}$

Proposition-Definition 8.4.7: For any two absolute values $\left.|\mid$ and $|\right|^{\prime}$ on K the following are equivalent:
(a) They define the same topology on K.
(b) For any $x \in K$ we have $|x|^{\prime}<1$ if and only if $|x|<1$.
(c) There exists a real number $s>0$ such that for all $x \in K$ we have $\underline{|x|^{\prime}=|x|^{s}}$.

Two such absolute values are called equivalent.
Pane: (c) \Rightarrow (a) \checkmark
(a) $\Rightarrow(b]:|x|<1 \underset{(a)}{(a)}\left|x^{n}\right|=|x|^{n} \rightarrow 0$ for $n \rightarrow \infty$.

$$
\stackrel{\Leftrightarrow}{\Leftrightarrow}\left|x^{n}\right|^{\prime}=|x|^{\mid n} \rightarrow 0 \cdots|x|^{\prime}<1 .
$$

(b) $\rightarrow(C):$ Fix y EK mil \mid bl $\# 0,1$. Whoa; $|4|>1$.

$$
\stackrel{(b)}{\Rightarrow}\left|x^{n} / 4 n\right|^{\prime}<1 \Rightarrow \ldots \Rightarrow|x|^{\prime}<|y|^{\prime m / n}
$$

$\left.\begin{array}{l}\text { Vary } m_{n}^{n} \Rightarrow|x|^{\prime} \leqslant|y|^{\prime \alpha} \\ \text { Report in } \frac{m}{n}<\alpha \Rightarrow \ldots \exists^{\prime} \Rightarrow|x|^{\prime} \geqslant|y|^{\prime \alpha}\end{array}\right\} \Rightarrow|x|^{\prime}=|y|^{\prime \alpha}$

$$
\begin{aligned}
& \left.\Rightarrow \log |x|^{\prime}=\alpha \cdot \log |y|^{\prime}=\log |x| \cdot \frac{\log |y|^{\prime}}{\log |y|}\right\} \Rightarrow \log |x|^{\prime}=\log |x| \cdot s \\
& \log |x|=\alpha \cdot \log |y| \\
& \text { qed. }
\end{aligned}
$$

$$
|n x| \leq|x| \text {. }
$$

Definition 8.4.8: An absolute value $\|$ is called ultrametric if it satisfies the stronger property
$\left(c^{\prime}\right)$ For any $x, y \in K$ we have $|x+y| \leqslant \max \{|x|,|y|\} . \sim 2 x_{1}+\ldots+x_{n} \mid \leqslant \max \left\{\left|x_{1}\right|, \ldots\left|x_{n}\right|\right\rangle$.
 ultrametric absolute value on K.
(b) Any ultrametric absolute value arises in this fashion from a valuation.
(c) Two valuations are equivalent if and only if the associated absolute values are equivalent.

$$
\forall s>0=\forall x: v^{\prime}(x)=s \cdot v(x) \quad \Leftrightarrow \quad c^{v^{\prime}(x)}=\left(c^{u(k)}\right)^{s}
$$

Basic Properties 8.4.10: For any absolute value || on K we have:

$$
J^{n}=1 \Rightarrow|\zeta|^{n}=|1|^{2}
$$

(a) For any $x \in K^{\times}$and $n \in \mathbb{Z}$ we have $\left|x^{n}\right|=|x|^{n}$.

$$
0<|1|=|1 \cdot 1|=|1| \cdot|1|=(1)^{2}
$$

$$
\Rightarrow 111=1
$$

(b) For any root of unity $\zeta \in K$ we have $|\zeta|=1$. In particular $|-1|=|1|=1$. $\quad \Rightarrow|\zeta|=1$.
(c) For any $x \in K$ and $n \in \mathbb{Z}$ we have $|n x| \leqslant|n| \cdot|x|$. $\quad[|x+\ldots+x| \leqslant|x| \ldots \ldots+|x|$ $1-x|=|(-1) \cdot x|=|-1| \cdot| x|=|x|$
(d) For any $x, y \in K$ we have $|x-y| \geqslant||x|-|y||$.
(e) For any $x, y \in K$ we have
$\frac{|x+y|=\max \{|x|,|y|\}}{\boldsymbol{T}}$ if $|x| \neq|y|$ and $|\mid$ is ultrametric.

$$
|x|=|(x-y)+y| \leq|x-y|+|y|
$$

$$
\begin{aligned}
& \text { Engin }|x|>|y| \\
& \text { and }|x+y|<\text { max }\{|x|,|y|\}=|x| \\
& \Rightarrow|x|=\mid(x+y)+(-y| | \leqslant \text { max }\{|x+y|, \underbrace{|-y|}_{|y|}\}<|x| \\
& \Rightarrow 4
\end{aligned}
$$

qed.

$$
\forall c \in \mathbb{R} \exists n \in \mathbb{Z}:|n \cdot 1|>c
$$

Definition 8.4.11: An absolute value || is called archimedean if f Otherwise it is called nonarchimedean.

Theorem 8.4.12: An absolute value $|\mid$ is ultrametric if and only if it is nonarchimedean.

$\Rightarrow 1.1$ nonardicieden.

1. (nomardensed, i.e. $\exists c>0: \forall n \in \mathbb{Z}:|n \cdot 1| \leqslant C$.

$$
\begin{aligned}
& \text { Talu } x_{y}, \mathbb{C}_{\text {with }}|x| \geq \operatorname{ly} \mid \text {. } \\
& \Rightarrow \quad|x+y|^{n}=\left|(x+y)^{n}\right|=\left|\sum_{n=0}^{n}\binom{n}{v} x^{\nu} y^{n-\nu}\right| \leqslant \sum_{v=0}^{n} \underbrace{\left.\left\lvert\, \begin{array}{l}
n \\
v
\end{array}\right.\right) \cdot q \mid}_{\leqslant c} \cdot \underbrace{|x|^{\nu} \cdot|y|^{n-\nu}}_{\leqslant|x|^{n}} \\
& \leq(u+1) \cdot c \cdot \mid x)^{n} \\
& \Rightarrow \quad|x+4|^{n} \leq \frac{\sqrt[n]{(n+1) \cdot c} \cdot|x| .}{1+1 \text { arn } n \infty} \quad \Rightarrow \quad|x+n| \leq|x| .
\end{aligned}
$$

Definition 8.4.13: On the field \mathbb{Q} we have the usual absolute value

$$
|x|_{\infty}:=\left\{\begin{array}{cc}
x & \text { if } x \geqslant 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

and for every prime number p the p-adic absolute value

$$
|x|_{p}:=\left\{\begin{array}{cl}
p^{-\operatorname{ord}_{p}(x)} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

where $\operatorname{ord}_{p}(x)$ is the exponent of p in the prime factorization of x.
The normalization in Definition 8.4.13 is specially chosen to achieve:
Theorem 8.4.14: For every $x \in \mathbb{Q}^{\times}$we have

$$
\prod_{p \leqslant \infty}|x|_{p}=1
$$

Pool:

$$
\begin{aligned}
& x= \pm \prod_{p_{R}}^{\prime} p_{p}^{u_{p}} \in \mathbb{Z}, \text { alums al }=0 \\
& |x|_{\infty}=\prod_{p} p_{p}^{\nu_{p}} \\
& \text { out }_{p}(x)=\nu_{p} \\
& \mid x l_{p}=p^{-\nu_{r}}
\end{aligned}
$$

Theorem 8.4.15: (Ostrowski) Every absolute value on \mathbb{Q} is equivalent to exactly one of the above.
Proof: Consider an arbitrary absolute value $\|\|$ on \mathbb{Q}. If it is archimedean, then:
Claim 1: $\forall m, n \in \underline{\mathbb{Z}^{>1}}:\|m\| \leqslant\left(\frac{\log m}{\log n}+1\right) \cdot n \cdot\left\{\mid n \|^{\frac{\log m}{\log n}} ; 1\right\}$.
Claim 2: $\left.\forall m, n \in \mathbb{Z}^{>1}: \overline{\|m\|} \ln ^{\operatorname{muc}} \leqslant\|n\|^{\log m}, 1\right\}$

$$
\|u\| \geq 1 ?
$$

Claim 3: $\forall m, n \in \mathbb{Z}^{>1}:\|m\|^{\frac{1}{\log m}}=\|n\|^{\frac{1}{\log n}}$.
Writ $m=\sum_{i=0}^{k} a_{i} n^{i}$ with $\begin{aligned} & a_{i} \in\{0,-7-7\} \\ & a_{\xi} \neq 0 .\end{aligned}$

$$
\begin{aligned}
& n^{k} \leq m<n^{n+1} \\
& \Rightarrow \quad \varepsilon \cdot \log n \leq \log m \leq(\varepsilon+1) \log n \\
& \varepsilon \leq \frac{\log m}{\log n}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{C\operatorname {log}1} \Rightarrow & \forall l \geqslant 1: \quad\|m\|^{l}=\left\|m^{l}\right\| \leq\left(l \cdot \frac{\log m}{\log n}+1\right) \cdot n \cdot \operatorname{mnx}\left\{\|n\|^{\frac{l o g}{} n}, 1\right\}^{l} \\
& \Rightarrow \quad\|m\|
\end{aligned}
$$

$$
l \rightarrow \infty \quad \Rightarrow \quad\|m\| \leq \operatorname{mx}\left\{\|n\|^{\frac{l y}{l y} n}, 1\right\} .
$$

$\|\cdot\|$ mathiden $\Rightarrow \exists \backsim:\|m\|>1 \Rightarrow\|n\|>1$.
$\begin{array}{ll}\Rightarrow \quad\|m\| \leq\|n\| \frac{\log n}{e_{2 n}} \\ \Rightarrow \quad U m \|^{\frac{1}{\log n}} & \left.\leq\|n\|^{\frac{1}{\log n} \quad} \quad \text { (Cain } 3\right)\end{array}$
Symb $\Rightarrow\|m\|^{\frac{1}{g_{m}}}=c>1$
$\Rightarrow U m\left\|=c^{l_{0} m}=m^{l_{y} c} \Rightarrow\right\| . \|$ equexi 的 1.1∞.
$U \cdot \|$ wandidile \Rightarrow uthonanc $\Rightarrow \forall n \in P:\|n\| \leq 1$.
$\|$. $\|$ umbine $\Rightarrow \exists a \in Q^{X}:\|a\| \neq 1$
$\Rightarrow \exists p$ pine: $\|\| \neq 1$.

$$
p \in g:=\left\{n \in \mathbb{Z}:\left\|_{n}\right\|<1\right\} \quad \text { in ilul } f \mathbb{Z}
$$

$$
\forall n \in \mathbb{\mathbb { C }}:\|n\|=\|p\|^{a d_{p}(n)}
$$

$\Rightarrow\|\cdot\|$ equi-ex do $1 \cdot 1_{p}$.
(p) maxithe

$$
\forall u \in 卫 \backslash p \mathbb{P}:\|n\|=1 .
$$

get.

