8.7 Power series

Fix a complete nonarchimedean absolute value || associated to the valuation v on K.
Proposition 8.7.1: (a) A series $\sum_{n \geqslant 0} x_{n}$ in K converges if and only if $\lim _{n \rightarrow \infty} x_{n}=0$.
(b) Convergent series in K can be arbitrarily rearranged and subdivided without changing convergence

$$
\text { Prof (a) : } s_{m}:=\sum_{n=0}^{m} x_{n} \Rightarrow \lim _{m \rightarrow \infty}\left(s_{m}-s_{m-1}\right)=\lim _{m \rightarrow \infty} s_{m}-\lim _{m \rightarrow \infty} s_{m-1}=0
$$

Supping $\lim _{n \rightarrow \infty} x_{n} \rightarrow 0$. To pure: ($\left.s_{m}\right)$ is Cancer.

$$
\begin{array}{ll}
\forall r>0 & \exists n_{0}: \forall n \geqslant n_{0}:\left|x_{n}\right| \leq \varepsilon \\
\Rightarrow & \forall m \geqslant n \geqslant n_{0}:\left|S_{m}-s_{n}\right|
\end{array}=\left|\sum_{\varepsilon=n t_{1}}^{m} x_{\varepsilon}\right| \leq \max \{\underbrace{\left.\left|x_{k}\right|: n<\varepsilon \leq m\right\}}_{\leqslant \varepsilon}
$$

$$
\leq \Sigma
$$

ged.
uniformize
Proposition 8.7.2: If v is normalized discrete, fix an element $\pi \in K$ with $v(\pi)=1$ and a set of representatives \mathcal{R} of $\mathcal{O}_{v} / \mathfrak{m}_{v}$ with $0 \in \mathcal{R}$. Then:
(a) Every element $x \in K$ can be written uniquely as a convergent Laurent series

$$
x=\sum_{i \in \mathbb{Z}} a_{i} \pi^{i}
$$

with $a_{i} \in \mathcal{R}$ and $a_{i}=0$ for all $i \ll 0$.
(b) Such an element lies in \mathcal{O}_{v} if and only if $a_{i}=0$ for all $i<0$.

$$
\begin{aligned}
O_{v} & =\{x \in k: v(x) \geq 0\} \\
m_{v} & =\{\cdots, \cdots(x)>0\} \\
& =O_{v} \cdot \pi .
\end{aligned}
$$

$P \rho:$

$$
m_{w}^{n}=\pi^{n} \cdot \underbrace{G_{v}}_{\text {copper. }}
$$

qed.

$$
\begin{aligned}
& G_{v}=\lim _{\epsilon_{n}} G_{v} / \mu_{u}^{n} \\
& \begin{array}{ll}
4 & n \quad 4 \\
x+m^{n}
\end{array} \\
& x+m_{v}^{n}=\sum_{i=0}^{n-i} a_{i} \pi^{i}+m_{v}^{n} \\
& x+m_{s}^{n+1}=\sum_{i=0}^{n} a_{i}^{\prime} \pi^{i}+m_{v}^{n+1} \ldots a_{i}^{\prime} \cdot \in \mathbb{R} \\
& x=\lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n-1} a_{i} \pi^{i}\right)=\sum_{i \geq 0} a_{i} \pi^{i} \text {. } \\
& \text { Conomely } \sum_{i \geq 0} a_{i} \pi^{i}+\mu_{v}^{n}=\sum_{i=0}^{n-1} a_{i} \bar{\pi}^{i}+\mu_{v}^{n} \Rightarrow a_{i} \text { mimes. } \\
& K=\bigcup_{m \geq 0} \pi^{-m} \cdot G_{L} \Rightarrow \text { ito. }
\end{aligned}
$$

Now we assume that $\mathbb{Q} \subset K$ and that the restriction of $\left.|\mid$ to \mathbb{Q} is $|\right|_{p} \Rightarrow \mathbb{Q}_{p} \subset K$.
Proposition 8.7.3: For any $x \in K$ with $|x-1|<1$ the series

$$
\log (x):=\sum_{n \geqslant 1}(-1)^{n-1} \cdot \frac{(x-1)^{n}}{n}
$$

$$
|u|=p^{-\sigma \alpha_{p}(n)} \geq \frac{1}{n}
$$

converges and satisfies

$$
\log (x y)=\log (x)+\log (y)
$$

Pune: $\left| \pm \frac{(x-1)^{n}}{n}\right|=\frac{|x-1|^{n}}{|n|} \leq n \cdot|x-1|^{n} \rightarrow 0$ for $n \rightarrow \infty \Rightarrow$ Series cough -

Pup: Zarainin. \quad outp $(0!)=\operatorname{alp}_{p}(1)=0$

$$
\begin{aligned}
& \operatorname{arl}_{p}(n!)=a_{p}(n)+\text { adp }((n-1)!) \\
& n=p^{k} m, p+m=\underline{k}+\sum_{i \geq 1}\left\lfloor\frac{n-1}{p^{i}}\right\rfloor
\end{aligned} \left\lvert\, \begin{aligned}
& \left\lfloor\frac{n}{p^{i}}\right\rfloor-\left\lfloor\frac{n-l}{p^{i}}\right\rfloor= \\
& =\left\lfloor\frac{p^{k} m}{p^{i}}\right\rfloor-\left\lfloor\frac{p^{k} m-1}{p^{i}}\right\rfloor \\
& \\
& =\left[\begin{array}{l}
i \leq 1 \\
i>k \Rightarrow 1
\end{array} \frac{n}{r^{i}}\right\rfloor
\end{aligned}\right.
$$

qud.

Proposition 8.7.5: For every $x \in K$ with $|x|<p^{-\frac{1}{p-1}}$ the series

$$
\exp (x):=\sum_{n \geqslant 0} \frac{x^{n}}{n!}=1+x+\sum_{n \geqslant 2} \frac{x^{n}}{n!}
$$

converges and satisfies
$r_{-l}:\left|\frac{x^{n}}{n!}\right|<\frac{|x|^{n}}{p^{-\frac{n}{p-1}}}=\left(\frac{\exp (x+y)=\exp (x) \cdot \exp (y) \text {. }}{\left(\frac{1 \times 1}{p^{-\frac{1}{p-1}}}\right)^{n} \text { as alan. }}\right.$
$\ln !\left\lvert\,>\operatorname{p}^{-\frac{n}{p-1}}\right.$
converges and satisfies
$r_{-l}:\left|\frac{x^{n}}{n!}\right|<\frac{|x|^{n}}{\boldsymbol{p}^{-\frac{n}{p-1}}}=\left(\frac{\exp (x+y)=\exp (x) \cdot \exp (y) .}{\left(\frac{|x|}{p^{-\frac{1}{p-1}}}\right)^{n} \text { as alan. }}\right.$
$\ln !\left\lvert\,>\boldsymbol{p}^{-\frac{n}{p^{-1}}}\right.$
tho: expolos $=i d$ and $\log \Delta \exp =i l_{\text {. }}$
Proposition 8.7.6: Exp and log induce mutually inverse group isomorphisms

$$
\begin{aligned}
& \underline{(K,+)}>\underbrace{\left\{x \in K:|x|<p^{\left.-\frac{1}{p-1}\right\}}\right.}_{\exp } \stackrel{l_{\text {y }}}{\cong} \frac{\left\{x \in K^{\times}\right.}{\Omega}:|x-1|<p^{-\frac{1}{p-1}}\}<\left(K^{\times}, \cdot\right) . \\
& \text { Her: }(1+x)^{a}=\text { rural } x, a \in K \text { with }|x|<p^{\frac{-1}{p^{-1}}} \\
& |a| \leq 1 \text {. } \\
& =\sum_{n \geq 0}\binom{a}{n} \cdot x^{n} \quad\binom{a}{n}=\frac{a(a-1) \cdot(a-n+1)}{n!}
\end{aligned}
$$

Example 8.7.7: Exp and log induce mutually inverse group isomorphisms

$$
\frac{\left(p \mathbb{Z}_{p},+\right) \cong\left(1+p \mathbb{Z}_{p}, \cdot\right) \quad \text { if } p>2}{\left(4 \mathbb{Z}_{p},+\right) \cong\left(1+4 \mathbb{Z}_{2}, \cdot\right) \quad \text { if } p=2}
$$

$$
\begin{aligned}
& K=C Q_{p} . \\
& |x|<p \frac{-1}{p-1}=\left\{\begin{array}{ll}
p^{-1} & \text { if } p=2 \\
>p^{-1} & \text { if } p>2
\end{array} \quad \Leftrightarrow \quad \operatorname{anp}_{p}(x)>1 \quad \text { if } p=2\right. \\
& \geqslant 1 \quad \text { if } p>2 .
\end{aligned}
$$

