9 Extensions of valuations

Throughout we fix a field K with an absolute value | |.

9.1 Normed vector spaces

Definition 9.1.1: A *norm* on a K-vector space V is a map $\| \|: V \to \mathbb{R}^{\geq 0}$ such that

- (a) For any $v \in V$ we have ||v|| = 0 if and only if v = 0.
- (b) For any $v \in V$ and $x \in K$ we have $||xv|| = |x| \cdot ||v||$.
- (c) For any $v, w \in V$ we have $||v + w|| \leq ||x|| + ||y||$.

Definition 9.1.2: Two norms || || and || ||' on V are called *equivalent* if there exist constants c, c' > 0such that $\forall v \in V: c \cdot ||v|| \leq ||v||' \leq c' \cdot ||v||.$

Theorem 9.1.3: If K is complete and $\dim_K(V) < \infty$, any norms on V are equivalent. In particular V is then complete with respect to the metric induced by $\| \|$.

Prof. Take Sam various of V and
$$|\sum_{i=1}^{n} v_i v_i| := \max \{|x_i|: i=1..., \}$$

To then: U.K. equines to $|\cdot|$. If to, then it below that U.K. is conjecte, became l. is explore

9.2 Extensions of complete absolute values

Assume that || is complete. **Proposition 9.2.1:** If || is archimedean, it possesses a unique extension to any algebraic extension of K. It is given by the formula $|y| = |\operatorname{Nm}_{L/K}(y)|^{1/[L/K]}$, and is again archimedean and complete. $\operatorname{Purf}_{\cdot} K = |\mathbb{R} \cup \mathbb{C}, |\cdot| = |\cdot|^{3} \quad \text{for multiple of } \mathbb{O} \land \mathbb{C} \land \mathbb{C} \land$ $= |\mathbb{L} = |K| - \mathbb{C}, |\cdot| = |\cdot|^{3} \quad \text{for multiple of } \mathbb{C} \land \mathbb{C} \land \mathbb{C} \land$ $|\pm| = |\pm|^{\frac{1}{2}}$ $|\pm| = |\pm|^{\frac{1}{2}}$ $|\pm| = |\pm|^{\frac{1}{2}}$ $|\pm| = |\pm|^{\frac{1}{2}}$ $|\pm| = |\pm|^{\frac{1}{2}}$

For the rest of this section we assume that | | is complete and nonarchimedean. Let $\mathcal{O}_{\mathfrak{p}}$ be its valuation ring with the maximal ideal \mathfrak{p} and the residue field $k := \mathcal{O}_{\mathfrak{p}}/\mathfrak{p}$.

Definition 9.2.2: For $f(X) = \sum_{i=0}^{n} a_i X^i \in K[X]$ we set

 $|f| := \max\{|a_i| : 0 \leq i \leq n\}.$

We call f primitive if |f| = 1. $\implies f \in \mathcal{O}_{g}[X] \setminus g[X]$.

Proposition 9.2.3: (Hensel's Lemma) Consider a primitive
$$f \in \mathcal{O}_p[X]$$
 and a decomposition $(f \mod \mathfrak{p}) = \overline{g}$ and
 $\overline{g} \cdot \overline{h}$ with coprime polynomials \overline{g} , $\overline{h} \in k[X]$. Then there exist $g, \overline{h} \in \mathcal{O}_p[X]$ with $(g \mod \mathfrak{p}) = \overline{g}$ and
 $(h \mod \mathfrak{p}) = \overline{h}$ and $\deg(g) = \deg(\overline{g})$ and $(f = g \cdot h)$.
Find: Let $d:=dq(d)$, $w:= dq(\overline{g}) = dg(\overline{g}) = dg(\overline{g}) = dg(\overline{g}) - w \leq d - w$.
Class $g_0, \overline{h_0} \in \mathcal{O}_p[X]$ with $(g \mod g) = \overline{g}$ and $(h_0 \mod g) = \overline{h}$ and $g_0 = w$.
Arise \overline{g} with we can arrive, know with \overline{w} , $\overline{b} \in l_p[X]$ with $\overline{g_0} = b_{10} - 1 \in g[K]$.
Thus an expression $g_0, \overline{h_0} \in \mathcal{O}_p[X]$. The $f - g_0 h_0 \in g[K]$ and $g_0 + b_{10} - 1 \in g[K]$.
Thus are each, \overline{w} of the \overline{g} and $f = g$ and $f - g_0 h_0 \in \overline{m}G[K]$ and $g_0 + b_{10} - 1 \in \overline{g}[K]$.
Thus are each, \overline{w} of the \overline{g} and $f = g$ and $f - g_0 h_0 \in \overline{m}G[K]$ and $g_0 + b_{10} - 1 \in \overline{g}[K]$.
Thus are each \overline{w} of $\overline{g} = g$ and $f - g_0 h_0 \in \overline{m}G[K]$ and $g_0 + b_{10} - 1 \in \overline{g}[K]$.
Thus are each \overline{w} of $\overline{g} = g$ and $f - g_0 h_0 \in \overline{m}G[K]$ and $g_0 + b_{10} - 1 \in \overline{g}[K]$.
Where $|\mathbf{k}| < 1$. Will be that $p_i, q_i \in \mathcal{O}_g[K]$ the $i \ge 1$ real true $dg_i(f_i) \le u_n$
 $g_i := g_0 + p_i \overline{w} + p_2 \overline{w}^{-1} + \dots + p_i \overline{w}^{-1}$
 $h_0 := h_0 \times q_1 \overline{w} + \dots + p_{n-1} \overline{w}^{-1}$
 $h_{n-1} := h_0 \times q_1 \overline{w} + \dots + q_{n-1} \overline{w}^{-1}$
 $w_{n-1} := h_0 \times q_1 \overline{w} + \dots + q_{n-1} \overline{w}^{-1}$
 $w_{n-1} := h_0 \times q_1 \overline{w} + \dots + q_{n-1} \overline{w}^{-1}$
 $w_{n-1} := h_0 \cdot q_1 \overline{w} + \dots + q_{n-1} \overline{w}^{-1}$
 $w_{n-1} := h_0 \cdot q_1 \overline{w} + \dots + q_{n-1} \overline{w}^{-1}$
 $w_{n-1} := h_0 \cdot q_1 \overline{w} + \dots + q_{n-1} \overline{w}^{-1}$
 $w_{n-1} := h_0 \cdot q_1 \overline{w} + \dots + q_{n-1} \overline{w}^{-1}$
 $w_{n-1} := h_0 \cdot q_1 \overline{w}$.
 $g_1 = g_{10-1} + f - \overline{w}^{-1}$
 $w_{n-1} := h_0 \cdot q_1 \overline{w}$.

$$f - g_{n}h_{n} = (f - g_{n-1}h_{n-1}) - (g_{n-1}q_{n} + h_{n-1}h_{n})\overline{u}^{n} - p_{n}q_{n}\overline{u}^{2n}$$

$$(mh : \iiint und (\overline{u}^{n+1}) \quad \in \overline{u}^{n}O_{j}(K) \text{ by annohise} \qquad \equiv 0 \text{ and } (\overline{u}^{n+1})$$

$$(\equiv) \frac{f - g_{n-1}h_{n+1}}{\overline{u}^{n}} \equiv g_{n-1}q_{n} + h_{n-1}h_{n} \quad \text{and} (\overline{u}).$$

$$([\underline{u}_{n}]^{n}] \xrightarrow{u} \equiv (ag_{0} + bh_{0})\overline{k_{n}} \quad \text{and} (\overline{u})$$

$$h_{n} = g_{0} \cdot ak_{n} + h_{0} \cdot bk_{n}$$

$$f \circ lq_{n} \text{ and} (\overline{u})$$

$$h_{n} = g_{0} \cdot ak_{n} + h_{0} \cdot bk_{n}$$

$$f \circ lq_{n} \text{ and} (\overline{u})$$

$$h_{n} = g_{0} \cdot ak_{n} + h_{0} \cdot bk_{n}$$

$$f \circ lq_{n} \text{ and} (\overline{u})$$

$$h_{n} = g_{0} \cdot ak_{n} + h_{0} \cdot bk_{n}$$

$$f \circ lq_{n} \text{ and} (\overline{u})$$

$$h_{n} = g_{0} \cdot ak_{n} + h_{0} \cdot bk_{n}$$

$$f \circ lq_{n} + h_{0} \cdot h_{n} + h_{0} \cdot h_{n}$$

$$h_{n} = g_{0} (ak_{n} + h_{0} \cdot h_{n}) + h_{0} \cdot h_{n}$$

$$h_{n} = g_{0} (ak_{n} + h_{0} \cdot h_{n}) + h_{0} \cdot h_{n}$$

$$h_{n} = g_{0} (ak_{n} + h_{0} \cdot h_{n}) + h_{0} \cdot h_{n}$$

$$h_{n} = g_{0} (ak_{n} - h_{0} \cdot h_{n}) + h_{0} \cdot h_{n}$$

$$h_{n} = g_{0} (ak_{n} - h_{0} \cdot h_{n}) + h_{0} \cdot h_{n}$$

$$h_{n} = g_{0} (ak_{n} - h_{0} \cdot h_{n}) + h_{0} \cdot h_{n}$$

$$h_{n} = g_{0} (ak_{n} - h_{0} \cdot h_{n}) + h_{0} \cdot h_{n}$$

$$h_{0} = h_{0} \cdot h_{0} \cdot h_{0} + h_{0} \cdot h_{0}$$

$$h_{0} = h_{0} \cdot h_{0} \cdot h_{0} \cdot h_{0} + h_{0} \cdot h_{0}$$

$$h_{0} = h_{0} \cdot h_{$$

Corollary 9.2.4: Consider a primitive $f \in \mathcal{O}_{\mathfrak{p}}[X]$ whose reduction modulo \mathfrak{p} possesses a simple root $\alpha \in k(\mathfrak{p})$. Then f possesses a unique root $a \in \mathcal{O}_{\mathfrak{p}}$ with $a + \mathfrak{p} = \alpha$.

(a) Then
$$|f| = \max\{|a_0|, |a_n|\}$$
.
(b) If $|f| = 1$, then all irreducible factors of $f \mod p$ are equivalent.
[Inf(a) \mathcal{H} and, any $|f| = |a_i|$ with is marical, $OLi \subset \mathcal{H}$.
 $\exists (f - d_g) = \sum_{i=0}^{n} a_i X^i = : \overline{g}$, $\overline{h}:=1$
 $\exists (f - d_g) = \sum_{i=0}^{n} a_i X^i = : \overline{g}$, $\overline{h}:=1$
 $\exists d_g (g) = \overline{g}$ and $d_g (g) = \overline{g}$.
 $\exists d_g (g) = \overline{g}$.
 $\exists d_g (g) = \overline{g}$.

Theorem 9.2.6: Consider any finite field extension L/K of degree n.

- (a) There exists a unique absolute value on L which extends | |.
- (b) This is given by the formula $|y| = |\operatorname{Nm}_{L/K}(y)|^{1/n}$.
- (c) This extension is again nonarchimedean and complete.

Corollary 9.2.7: For any algebraic extension L/K there exists a unique absolute value on L that extends ||. alik is a condition of the line of conditions of all <math>L' and L' and L'