Reminder:

We fix a field K with a complete nonarchimedean absolute value | | with valuation ring $\mathcal{O}_{\mathfrak{p}}$, with maximal ideal \mathfrak{p} , and with residue field $k := \mathcal{O}_{\mathfrak{p}}/\mathfrak{p}$.

Theorem 9.1.3: Any norms on a finite dimensional *K*-vector space are equivalent and complete.

Proposition 9.2.3: (Hensel's Lemma) Consider a primitive $f \in \mathcal{O}_{\mathfrak{p}}[X]$ and a decomposition $(f \mod \mathfrak{p}) = \overline{g} \cdot \overline{h}$ with coprime polynomials $\overline{g}, \overline{h} \in k[X]$. Then there exist $g, h \in \mathcal{O}_{\mathfrak{p}}[X]$ with $(g \mod \mathfrak{p}) = \overline{g}$ and $(h \mod \mathfrak{p}) = \overline{h}$ and $\deg(g) = \deg(\overline{g})$ and $f = g \cdot h$.

Corollary 9.2.5: Consider any irreducible $f(X) = \sum_{i=0}^{n} a_i X^i \in K[X]$ with $a_n \neq 0$. Then $|f| = \max\{|a_0|, |a_n|\}$.

Theorem 9.2.6: Consider any finite field extension L/K of degree n.

- (a) There exists a unique absolute value on L which extends $| \cdot |$.
- (b) This is given by the formula $|y| = |\operatorname{Nm}_{L/K}(y)|^{1/n}$.
- (c) This extension is again nonarchimedean and complete.

Proof: let G be the integral channe of Og in L. Clami: HyEL: YE OG (=) Nom L/KC (4) E Og

Ay exterin is a non a Hen K-rech gree L. condite and injus up to equivaluce I migne up to a power.

$$\begin{split} P_{--\frac{1}{2}} \stackrel{a_{--\frac{1}{2}}}{\longrightarrow} : \underbrace{\text{free extra chapt.}}_{K \in \mathbb{N}} \stackrel{a_{--\frac{1}{2}}}{\longrightarrow} \stackrel{a_{--\frac{1}{2}}}{\longrightarrow} \stackrel{a_{-\frac{1}{2}}}{\longrightarrow} \stackrel{a_{-\frac{1}{2$$

9.3 Newton Polygons

$$v(\alpha) = \frac{1}{n} \cdot v(a_0)$$

Assume that | | is complete and nonarchimedean and associated to a valuation v.

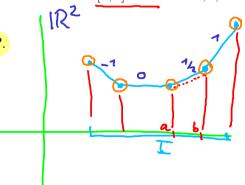
Proposition 9.3.1: For any irreducible monic polynomial $f(X) = X^n + \sum_{i=0}^{n-1} a_i X^i \in K[X]$ and any zero α in an algebraic closure of K we have $|\alpha| = |a_0|^{1/n}$.

$$\frac{\operatorname{furf}_{:} \operatorname{fut}_{:} = K(\alpha) \Rightarrow f \xrightarrow{1} \operatorname{fut}_{:} \operatorname{fut}_{:} = [L/k] = n.$$

$$\Rightarrow |\alpha| = |\operatorname{Num}_{l|k}(\alpha)|^{\frac{1}{14}} = |\pm \alpha_0|^{\frac{1}{14}} = |\alpha_0|^{\frac{1}{14}}.$$

Definition 9.3.2: (a) A convex polygon $P \subset \mathbb{R}^2$ is the graph of a piecewise linear convex function $I \to \mathbb{R}$ for some closed interval I.

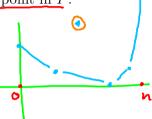
- (b) If such P contains a straight line segment of slope ξ over the maximal interval $[a, b] \subset I$ with a, b, then ξ is called a *slope of P of multiplicity* b-a.
- (c) A point on P where the slope changes is called a *break point of* P.



Fix a polynomial $f(X) = \sum_{i=0}^{n} a_i X^i \in K[X]$ with $a_0, a_n \neq 0$ and consider the finite set $S := \{(i, v(a_i)) \mid 0 \leq i \leq n \text{ with } a_i \neq 0\}. \subset \mathbb{R}^2$

Definition 9.3.3: The *Newton polygon* of f is the unique convex polygon over the interval [0, n] with all end points and break points in S, such that each point of S lies vertically above a point in P.





Proposition 9.3.4: Write $f(X) = a_n \cdot \prod_{i=1}^n (X - \alpha_i)$ with $\alpha_i \in \overline{K}$. Then for every real number ξ , the multiplicity of ξ as a slope of the Newton polygon of f is the number of i with $v(\alpha_i) = -\xi$.

$$\begin{split} & \underset{n=1}{\overset{\text{left}}{=}} \underbrace{\text{d}}_{i} = \underbrace{\text{d}}_{i} \underbrace{\text{d}}_{i} \underbrace{\text{d}}_{i} \underbrace{\text{d}}_{i} \cdots \underbrace{\text{d}}_{i} \\ & \underset{n=1}{\overset{\text{d}}{=}} \underbrace{\text{d}}_{u} \underbrace{\text{d}}_{v_{1}} \underbrace{\text{d}}_{v_{1}} \cdots \underbrace{\text{d}}_{v_{i}} \\ & \underset{n=1}{\overset{\text{d}}{=}} \underbrace{\text{d}}_{u} \underbrace{\text{d}}_{v_{1}} \underbrace{\text{d}}_{v_{1}} \underbrace{\text{d}}_{v_{1}} \cdots \underbrace{\text{d}}_{v_{i}} \\ & \underset{n=1}{\overset{\text{d}}{=}} \underbrace{\text{d}}_{u} \underbrace{\text{d}}_{v_{1}} \underbrace{\text{d}}_{v_{1}} \cdots \underbrace{\text{d}}_{v_{i}} \underbrace{\text{d}}_{v_{i}} \underbrace{\text{d}}_{v_{i}} \cdots \underbrace{\text{d}}_{v_{i}} \underbrace{\text{d$$

See Th. 6.3. Daliel.

ged.