Reminder:

We fix a field K with a complete nonarchimedean absolute value | | with valuation ring O,, with maximal
ideal p, and with residue field k := O, /p.

Take a polynomial f(X) =" a;X" € K[X] with ao, a, # 0 and consider the finite set
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Definition 9.3.3: The Newton polygon of f is the unique convex polygon over the interval [0, n] with all
end points and break points in S, such that each point of .S lies vertically above a point in P.

Proposition 9.3.4: Write f(X) = a, - [[[;(X — a;) with «; E(Ia Then for every real number &, the
multiplicity of £ as a slope of the Newton polygon of f is the number of ¢ with v(a;) = —¢.

Corollary 9.2.5: (of Hensel’s Lemma) If f is irreducible, then |f| = max{|ao|, |a,|}.




Proposition 9.3.5: The decomposition of the Newton polygon of f into straight line segments corresponds
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for every real number &.



Now assume in addition that the valuation v is normalized.
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Proposition 9.3.6: Then all end points and break points of the Newton polygon lie in Z2.
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to n = deg(f), then f is irreducible.
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Proposition 9.3.7: If the Newton polygon of f has a single slope of the form “* for an integer m coprime
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Note 9.3.8: In the case m = —1 this is the Eisenstein criterion.
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9.4 Lifting prime ideals

As before we assume that | | is complete and associated to a valuation v with valuation ring O, and
maximal ideal p and residue field k(p) := O,/p. Consider a separable finite extension L/K and let w

denote the unique valuation on L that extends v.

Proposition 9.4.1: (a) The integral closure of O, in L is the ring
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(b) There is a unique prime g of O, above p, given by

q = {yeL:w(y) >0}
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From Section 6.2 we obtain: \L‘.& ()1_: (DQ?, . (TCJ

Proposition 9.4.2: Assume that k(p) is perfect. Then: & 0. — (q_e {
(a) The ramification degree of q over p is eqp = [w(L*) : v(K*)]. = j % .
(b) The inertia degree of q over p is fy, = [k(q)/k(p)]. .~ R e= e"ﬂ-b}

(c) We have [L/K] = eq - fqp- / = \-J(L“) _ Z\O(T(j
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9.5 Extensions of absolute values

Proposition 9.5.1: (Simultaneous approximation) Consider pairwise inequivalent norms | |1,...,]| |, on
a field K and elements ay,...,a, € K. Then for every € > 0 there exists an = € K such that |z — a;];< ¢
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Proposition 9.5.2: For any finite separable field extension L/K and any field extension K /K we have
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Now we fix an absolute value | | on K that is not necessarily complete, and a {wﬁmﬂwﬁm
—_— R

L/K. We apply the above to the completion K of K with respect to | | with the extended absolute value

| | For each i let | |; denote the unique absolute value on I; that extends | | on K.

Lemma 9.5.3: Two absolute values on L that extend | | are equivalent if and only if they are equal.
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Proposition 9.5.4: The different extensions of | | to L are precisely the restrictions | |; of the | |; to L,
and for each of them the completion of L is L;.
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Proposition 9.5.5: Assume that | | is archimedean. Then either
(a) K= Candall L; ~C and [L/K] =r.
(b) K =R and all L; 2 R or C and [L/K] = ry + 2r, where rq is the number of 7 with L; = R and Ty
the number of ¢ with L; = C.

For the rest of this section we assume that | | is nonarchimedean and corresponds to the discrete valuation
ord, for a maximal ideal p of a Dedekind ring A with Quot(A) = K. Let O C K denote the respective
completions and m C O the maximal ideal. By Proposition 9.4.1 the integral closure O; C L; of O is the
valuation ring for | |;. Let n; denote its unique maximal ideal. Let B denote the integral closure of A in L.
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Proposition 9.5.6: The isomorphism in Proposmon 9.5.2 induces an isomorphism

e——

B®sO = onl

Lot Poris A1, luac.nhdkotls,,@hka_a = B A R ok
[ Lred

J!

=) ReU & Lo O::‘j_jj\i“' {g(%k:L_

") &@OCII%K Lew = XL,

L

Vel \ s Am Vi b e 2L 3 O =t 0
- e ~ v A~ .
‘[}%O < — 5 ii(gb‘—&:w. K?-Z‘Y.(-i/'(]

« '
’\i“‘dﬁﬂ*ﬂu@-mk&«l . Eu..ét-,,.;.ué nlod 2
wee (G723,

=‘—'3-30 2(’] 3'\)-‘(\""" Y
Te st ’—L-.-/ wl «=0 .

[Z‘_’(. e xt L"‘-st.



