Reminder:
We fix a field K with a complete nonarchimedean absolute value \| | with valuation ring $\mathcal{O}_{\mathfrak{p}}$, with maximal ideal \mathfrak{p}, and with residue field $k:=\mathcal{O}_{\mathfrak{p}} / \mathfrak{p}$.
Take a polynomial $f(X)=\sum_{i=0}^{n} a_{i} X^{i} \in K[X]$ with $a_{0}, a_{n} \neq 0$ and consider the finite set

$$
S:=\left\{\left(i, v\left(a_{i}\right) \mid 0 \leqslant i \leqslant n \text { with } a_{i} \neq 0\right\} .\right.
$$

Definition 9.3.3: The Newton polygon of f is the unique convex polygon over the interval $[0, n]$ with all end points and break points in S, such that each point of S lies vertically above a point in P.
Proposition 9.3.4: Write $f(X)=a_{n} \cdot \prod_{i=1}^{n}\left(X-\alpha_{i}\right)$ with $\alpha_{i} \in \bar{K}$. Then for every real number ξ, the multiplicity of ξ as a slope of the Newton polygon of f is the number of i with $v\left(\alpha_{i}\right)=-\xi$.

Corollary 9.2.5: (of Hensel's Lemma) If f is irreducible, then $|f|=\max \left\{\left|a_{0}\right|,\left|a_{n}\right|\right\}$.

Proposition 9.3.5: The decomposition of the Newton polygon of f into straight line segments corresponds to a factorization $f=a_{n} \prod_{\xi} f_{\xi}$ over K with

$$
f_{\xi}(X):=\prod_{\substack{1 \leqslant i \leqslant n \\ v\left(\alpha_{i}\right)=-\xi}}\left(X-\alpha_{i}\right) \in K[X]
$$

for every real number ξ.

$$
\begin{array}{cl}
L:=K[X] /(f) \cong K\left(\alpha_{i}\right) \quad f o r & \rightarrow i . \quad n=\operatorname{dy}(f)=[l / k] . \\
\Rightarrow v\left(\alpha_{i}\right)=\frac{1}{n} \cdot v(\underbrace{N m_{L / k}\left(\alpha_{j}\right)}_{ \pm \frac{a_{0}}{a_{n}}})=\text { indement of } i .
\end{array}
$$

duck \&
Now assume in addition that the valuation v is normalized. $i . \quad v\left(k^{x}\right)=巴$.
Proposition 9.3.6: Then all end points and break points of the Newton polygon lie in $\mathbb{Z}^{2} \uparrow$是.

Th-sce
que.

Proposition 9.3.7: If the Newton polygon of f has a single slope of the form $\frac{m}{n}$ for an integer m coprime to $n=\operatorname{deg}(f)$, then f is irreducible.
Pl: If g han tore $\frac{m}{n}$ wick mustitich $d>0 \Rightarrow d \cdot \frac{m}{n} \in \mathbb{Z} \Rightarrow u l d$.

$$
\left.\pm \begin{array}{c}
11 \\
\pm \\
a_{0}
\end{array}\right) . \quad d \geqslant n .
$$

Note 9.3.8: In the case $m=-1$ this is the Eisenstein criterion.

$$
\text { I manic, beyer } n
$$

9.4 Lifting prime ideals

As before we assume that $\|$ is complete and associated to a valuation v with valuation ring \mathcal{O}_{p} and maximal ideal \mathfrak{p} and residue field $k(\mathfrak{p}):=\mathcal{O}_{\mathfrak{p}} / \mathfrak{p}$. Consider a separable finite extension L / K and let w denote the unique valuation on L that extends v.

Proposition 9.4.1: (a) The integral closure of $\mathcal{O}_{\mathfrak{p}}$ in L is the ring

$$
\begin{aligned}
& \mathcal{O}_{q}:=\{\underset{w}{y} \in L: \boldsymbol{v}(y) \geqslant 0\} .
\end{aligned} \quad \text { See proof of Thu 9.2.G }
$$

(b) There is a unique prime \mathfrak{q} of $\mathcal{O}_{\mathfrak{q}}$ above \mathfrak{p}, given by $w(y)=\frac{1}{[l / k]} \cdot v\left(\mu_{2}(y)\right.$

$$
\begin{aligned}
& \frac{\mathfrak{q}:=\{y \in L: w(y)>0\}}{\mathfrak{l}} . \\
& \text { nimemok. ide of } \mathrm{O}_{\mathrm{yy}}
\end{aligned}
$$

From Section 6.2 we obtain:
Proposition 9.4.2: Assume that $k(\mathfrak{p})$ is perfect. Then:
(a) The ramification degree of \mathfrak{q} over \mathfrak{p} is $\left.e_{\mathfrak{q} \mid \mathfrak{p}}=\underline{\left[w\left(L^{\times}\right): v\left(K^{\times}\right)\right.}\right]$.
(b) The inertia degree of \mathfrak{q} over \mathfrak{p} is $f_{\mathfrak{q} \mid \mathfrak{p}}=[k(\mathfrak{q}) / k(\mathfrak{p})]$.
(c) We have $[L / K]=e_{q \mid \mathfrak{p}} \cdot f_{q \mid \mathfrak{p}}$.

$$
\Rightarrow v(\pi)=e \cdot w(\pi)
$$

$$
\Rightarrow \frac{w\left(L^{k}\right)=\mathbb{Z} \cdot w(\pi)}{v\left(K^{k}\right)=\mathbb{C} \cdot v(\pi)}
$$

qed.
9.5 Extensions of absolute values

Proposition 9.5.1: (Simultaneous approximation) Consider pairwise inequivalent norms $\left|\left.\right|_{1}, \ldots,| |_{n}\right.$ on a field K and elements $a_{1}, \ldots, a_{n} \in K$. Then for every $\varepsilon \geq 0$ there exists an $x \in K$ such that $\left|x-a_{i}\right|_{\mathrm{i}}<\varepsilon$ for all i.
Puff: Recall $1.1,|.|^{\prime}$ equivale $\Leftrightarrow\left(\forall x \in k:|x|<1 \Leftrightarrow|x|^{\prime}<1\right.$.)
$n=0 \quad \checkmark$
$n=1$: Tan $x=a_{1}$

$$
\Rightarrow y:=\frac{\beta}{a} \text { rations }|y|_{1}>1>|y|_{n} \text {. firn of } 8.8 .7(\delta) \text {. }
$$

Clii: $\exists z \in K:|z|_{1}>1>|z|_{i}$ f. $2 \leq i \leq n$.
$P_{\text {ont }}: n=2 \checkmark$
$n>2 \Rightarrow$ Tan $z \in K$ with $|z|_{1}>1>|z|_{i}$ ho $2 \leq i \leq n-1$.
Care $\mid z l_{n} \leq 1$: The $z^{m} y$ dos it $\operatorname{mon} m>0$: $~ l z^{m}>\left.\right|_{1}=\left.|z|_{1}^{m} \cdot\right|_{>} h_{1}>1$

$$
\text { Fo } 1 \text { Li<n: }\left|z^{m} s\right|_{i}=|z|_{i}^{m} \cdot|n|_{i}<1 \text { \& m } \gg 0 \text {. }
$$

Con $|z|_{n}>1:$ Let $t_{m}:=\frac{z^{m}}{1+z^{m}}$ \& $m \gg 0: \quad \begin{aligned} & \left|t_{m}\right|_{i} 10 \text { ar } 1<i<n \\ & \mid t_{m} l_{i} \rightarrow 1 \text { an } \frac{1=1, n .}{}\end{aligned}$
The try dis it:
qu l.

Bo the claim we con bide $z_{i} \in k$ with $\left|z_{i}\right|_{i}>1>\left|z_{i}\right|_{j}$ fo de $i \neq j$.
$\operatorname{Th} \frac{z_{i}^{m}}{1+z_{i}^{n}} \longrightarrow\left\{\begin{array}{lll}1 & \text { hr } l \cdot l_{i} \\ 0 & \text { hr } l \cdot l_{j} & \text { ha } d z_{i}\end{array}\right]$.
Tale $x:=\sum_{i} a_{i} \cdot \frac{z_{i}^{m}}{1+z_{i}^{m}}$ fr m>> 0 .

(qed)

Proposition 9.5.2: For any finite separable field extension L / K and any field extension \hat{K} / K we have

$$
L \otimes_{K} \hat{K} \cong \stackrel{r}{X} \hat{L}_{i}
$$

for finite separable field extensions \hat{L}_{i} / \hat{K} with $[L / K]=\sum_{i=1}^{r}\left[\hat{L}_{i} / \hat{K}\right]$.

Puff, Wink $L=K(a) \cong K[x] /(f(x))$ on $f \in K[x]$ inaluicible.

$$
\Rightarrow L \underset{k}{\theta} \hat{k} \equiv \hat{k}[x] /(f(x)) \cong{\underset{i}{x}}_{\underset{i}{n}}^{\hat{k}[x] /\left(f_{i}\right)}
$$

$$
f=\prod_{i=1}^{n} f_{i}
$$

Chienkemish Than.

ged.

Now we fix an absolute value || on K that is not necessarily complete, and a finite separable extension $\underline{L / K}$. We apply the above to the completion \hat{K} of K with respect to || with the extended absolute value $\left\|\|^{\hat{N}}\right.$. For each i let $\left|\left.\right|_{i}\right.$ denote the unique absolute value on \hat{L}_{i} that extends || on \hat{K}.

Lemma 9.5.3: Two absolute values on L that extend || are equivalent if and only if they are equal.

Proposition 9.5.4: The different extensions of $\| \mid$ to L are precisely the restrictions $\left|\left.\right|_{i}\right.$ of the $| \hat{i}$ to L, and for each of them the completion of L is \hat{L}_{i}.
Prof: Each $l \cdot l_{i} \hat{i}$ induces on abveneve on L that exalts $l \cdot l$. Coney: Let $1 \cdot l$ ' be an abs. where an L thant expos 1.1 . Lat \hat{L} be it cempati of L wick abr. when $l . l^{A}$ $\Rightarrow L \otimes \hat{K} \longrightarrow \hat{L} K$-algelun hone.
$フ$ (1) $Z \longmapsto y \cdot z$
Thin mat pores thigh

as mire

Non $1 \cdot \hat{1}$ and $1 \cdot l_{i}^{1}$
both exact $1 \cdot l$ an \hat{k}
$\Rightarrow \frac{1.1 \text { ranks to } 1 \cdot \hat{1}_{i}}{}$.
tere L has dune iysin $\hat{L} \Rightarrow \quad \hat{L}_{i}$ desein $\left.\hat{L} . \quad \begin{array}{l}\text { e chand becom corplete }\end{array}\right] \Rightarrow \hat{L}_{i}=\hat{L}$.
que

Proposition 9.5.5: Assume that || is archimedean. Then either
(a) $\hat{K} \cong \mathbb{C}$ and all $\hat{L}_{i} \cong \mathbb{C}$ and $[L / K]=r$.
(b) $\hat{K} \cong \mathbb{R}$ and all $\hat{L}_{i} \cong \mathbb{R}$ or \mathbb{C} and $[L / K]=r_{1}+2 r_{2}$, where r_{1} is the number of i with $\hat{L}_{i} \cong \mathbb{R}$ and $\underline{r_{2}}$ the number of i with $L_{i} \cong \mathbb{C}$.

For the rest of this section we assume that \lfloor is nonarchimedean and corresponds to the discrete valuation $\operatorname{ord}_{\mathfrak{p}}$ for a maximal ideal \mathfrak{p} of a Dedekind ring A with $\operatorname{Quot}(A)=K$. Let $\mathcal{O} \subset \hat{K}$ denote the respective completions and $\mathfrak{m} \subset \mathcal{O}$ the maximal ideal. By Proposition 9.4.1 the integral closure $\mathcal{O}_{i} \subset \hat{L}_{i}$ of \mathcal{O} is the valuation ring for $\mid \hat{i}$. Let \mathfrak{n}_{i} denote its unique maximal ideal. Let B denote the integral closure of A in L.

$$
L \mathbb{R} \hat{k} \cong \underbrace{\infty}_{i=1} \widehat{L}_{i}
$$

Proposition 9.5.6: The isomorphism in Proposition 9.5.2 induces an isomorphism

$$
B \otimes_{A} \mathcal{O} \cong \stackrel{r}{X} \mathcal{O}_{i=1}
$$

 [L/K].
$\Rightarrow B Q_{A} O$ is a bue $0-$ whe of wh n.

$$
B A_{A} k=L .
$$

al $B \otimes_{A} O \subset B \otimes_{A} \hat{k}=L_{\mathbb{K}} \hat{k}={ }_{i} \hat{\iota}_{i}$
$\forall b \in B$: b inbal or $A \Rightarrow \forall i$: ib ingen i \hat{L}_{i} i intal aro $O \Rightarrow \operatorname{lin} i O_{i}$

$$
\Rightarrow \quad B \otimes_{A} \cup<{ }_{i=1}^{\chi} O_{i} O \text {-hin. }
$$

Ntteiden the O-uthe of aren". $\Rightarrow \exists n \geqslant 0 ; e(B O O) \supset{\underset{i}{i=1}=0}_{n}^{n} \cdot O_{i}$.
To chom: Thi, hald wikh $n=0$.
Rest wext time.

