Reminder:

We fix a field K with a complete nonarchimedean absolute value | | with valuation ring $\mathcal{O}_{\mathfrak{p}}$, with maximal ideal \mathfrak{p} , and with residue field $k := \mathcal{O}_{\mathfrak{p}}/\mathfrak{p}$.

Take a polynomial $f(X) = \sum_{i=0}^{n} a_i X^i \in K[X]$ with $a_0, a_n \neq 0$ and consider the finite set

$$S := \{ (i, v(a_i)) \mid 0 \leq i \leq n \text{ with } a_i \neq 0 \}.$$

Definition 9.3.3: The *Newton polygon* of f is the unique convex polygon over the interval [0, n] with all end points and break points in S, such that each point of S lies vertically above a point in P.

Proposition 9.3.4: Write $f(X) = a_n \cdot \prod_{i=1}^n (X - \alpha_i)$ with $\alpha_i \in \overline{K}$. Then for every real number ξ , the multiplicity of ξ as a slope of the Newton polygon of f is the number of i with $v(\alpha_i) = -\xi$.

Corollary 9.2.5: (of Hensel's Lemma) If f is irreducible, then $|f| = \max\{|a_0|, |a_n|\}$.

Proposition 9.3.5: The decomposition of the Newton polygon of *f* into straight line segments corresponds to a factorization $f = a_n \prod_{\xi} f_{\xi}$ over K with $f_{\xi}(X) :=$

$$f_{\xi}(X) := \prod_{\substack{1 \le i \le n \\ v(\alpha_i) = -\xi}} (X - \alpha_i) \in K[X]$$

for every real number ξ .

9.4 Lifting prime ideals

As before we assume that | | is complete and associated to a valuation v with valuation ring $\mathcal{O}_{\mathfrak{p}}$ and maximal ideal \mathfrak{p} and residue field $k(\mathfrak{p}) := \mathcal{O}_{\mathfrak{p}}/\mathfrak{p}$. Consider a separable finite extension L/K and let w denote the unique valuation on L that extends v.

Proposition 9.4.1: (a) The integral closure of $\mathcal{O}_{\mathfrak{p}}$ in *L* is the ring

(b) There is a unique prime
$$\mathbf{q}$$
 of $\mathcal{O}_{\mathbf{q}}$ above \mathbf{p} , given by

$$\mathbf{q} := \{ y \in L : w(y) > 0 \}.$$

$$\mathbf{q} := \{ y \in L : w(y) > 0 \}.$$

$$\mathbf{u}$$

From Section 6.2 we obtain:

Proposition 9.4.2: Assume that $k(\mathfrak{p})$ is perfect. Then:

(a) The ramification degree of \mathfrak{q} over \mathfrak{p} is $e_{\mathfrak{q}|\mathfrak{p}} = [w(L^{\times}) : v(K^{\times})]$.

(b) The inertia degree of \mathfrak{q} over \mathfrak{p} is $f_{\mathfrak{q}|\mathfrak{p}} = [k(\mathfrak{q})/k(\mathfrak{p})]$.

(c) We have $[L/K] = e_{\mathfrak{q}|\mathfrak{p}} \cdot f_{\mathfrak{q}|\mathfrak{p}}$.

9.5 Extensions of absolute values

Proposition 9.5.1: (Simultaneous approximation) Consider pairwise inequivalent norms $||_1, \ldots, ||_n$ on a field K and elements $a_1, \ldots, a_n \in K$. Then for every $\varepsilon > 0$ there exists an $x \in K$ such that $|x - a_i| < \varepsilon$ Purf: Recult 1.1, 1.1' equivalent ((VKEK: 1×1<1 (|x) <1.) n=01/ n = 2: 1.1, 1.1, inque = = = xek: |a|, <1 - 1 |a|, 21] why exactly? = pek: 1ph = 1 - L |b|, <1 Bythe concluded n=1; Tdu x=a, = y:= B ratific [4] >1 > 1/1 . for of 8.4.7 (6). Chi. Jzek, 121, >1>121; for 26154. Pmf: n=2 ~ 1>2 = Tak zek with 121, >1>121; & 2615 n-1. Can $|z|_{n} \leq 1$: The z^my does it for $m \gg 0$: $|z^{m}y|_{1} = |z|_{1}^{m} |y|_{1} > 7$ $|z_{1}| = |z_{1}|, |z_{1}| < 7.$ $G_{ne}\left[\frac{1}{2}\right]_{n} > 1: \quad f_{ne} \quad t_{m} := \frac{2^{m}}{1 + 2^{m}} \quad k_{m} = \frac{1}{1 + 2^{m}} \quad$ Itul: -17 hu i=1, n. The try does it :

Proposition 9.5.2: For any finite separable field extension L/K and any field extension \hat{K}/K we have $L \otimes_K \hat{K} \cong \mathbf{X} \hat{L}_i$ for finite separable field extensions \hat{L}_i/\hat{K} with $[L/K] = \sum_{i=1}^r [\hat{L}_i/\hat{K}]$. Unite $L = K(\alpha) \cong K[X]/(\ell(X))$ Re f Ell(K] inducible. $f_{i} \quad \bigcup_{k} \in \mathbb{K} = \mathbb{K} \left[\times \right] / \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \approx \frac{1}{2} \frac{1}{2}$ $f = \prod_{i=1}^{r} f_i$ Chrise Remier The ind. nonic - K[K] $[L/ke] = din_{ke}(L) = din_{ke}(LOK) = \sum_{k=1}^{k} [Li]$ = bi paria in mpulla

Now we fix an absolute value | | on K that is not necessarily complete, and a finite separable extension L/K. We apply the above to the completion \hat{K} of K with respect to | | with the extended absolute value $| |\hat{i}|$ denote the unique absolute value on \hat{L}_i that extends | | on \hat{K} .

Lemma 9.5.3: Two absolute values on L that extend | | are equivalent if and only if they are equal.

Proposition 9.5.4: The different extensions of | | to L are precisely the restrictions $| |_i$ of the $| |_i^{\hat{i}}$ to L, and for each of them the completion of L is \hat{L}_i .

Ale I has done inge in [

ged

Proposition 9.5.5: Assume that || is archimedean. Then either

- (a) $\hat{K} \cong \mathbb{C}$ and all $\hat{L}_i \cong \mathbb{C}$ and [L/K] = r.
- (b) $\hat{K} \cong \mathbb{R}$ and all $\hat{L}_i \cong \mathbb{R}$ or \mathbb{C} and $[L/K] = r_1 + 2r_2$, where r_1 is the number of i with $\hat{L}_i \cong \mathbb{R}$ and r_2 the number of i with $\hat{L}_i \cong \mathbb{C}$.

For the rest of this section we assume that $| \cdot |$ is nonarchimedean and corresponds to the discrete valuation ord_p for a maximal ideal **p** of a Dedekind ring A with Quot(A) = K. Let $\mathcal{O} \subset \hat{K}$ denote the respective completions and $\mathfrak{m} \subset \mathcal{O}$ the maximal ideal. By Proposition 9.4.1 the integral closure $\mathcal{O}_i \subset \hat{L}_i$ of \mathcal{O} is the valuation ring for $| \cdot |_i$. Let \mathfrak{n}_i denote its unique maximal ideal. Let B denote the integral closure of A in L.

$$L_{\mathcal{R}}^{\mathcal{Q}} \hat{\boldsymbol{k}} \cong \tilde{\boldsymbol{k}} \hat{\boldsymbol{\ell}}_{i}$$

Proposition 9.5.6: The isomorphism in Proposition 9.5.2 induces an isomorphism

$$B \otimes_{A} \mathcal{O} \cong \overset{r}{\underset{i=1}{\times}} \mathcal{O}_{i}$$

$$f_{i} = 1$$

$$f_{i} = 1$$