10 Infinite Galois theory

10.1 Topological groups

Definition 10.1.1: A topological group is a group G endowed with a topology, such that the following

maps are continuous:

GxG—G, (g,h) — gh,
G—G, g—yg!'

Example 10.1.2: Every group with the discrete topology is a topological group.

—_—

Remark 10.1.3: Some authors require that the topology is also Hausdorff. C
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Example 10.1.4: Let K be a field with an absolute value | | and endow GL, ( ) with the topology

induced by the product topology on Mat,,,(K) = K n*,
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Proposition 10.1.5: Every subgroup of a topological group becomes a topological group with the induced
topology. Cule—aC C—¢
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Proposition 10.1.6: Every (finite or infinite) product of topological groups, endowed with the product

topology, is a topological group.
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Proposition 10.1.7: For every topological group G and any g € G the maps G — G, x — gz and x — xg

and z — Y9z are homeomorphisms. ———
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Proposition 10.1.8: Every open subgroup of a topological group is closed.
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Definition 10.1.9: A topological isomorphism between topological groups is a group isomorphism which

is also a homeomorphisﬁm. Prag. /- Ev—y Py L \ PO Poy “loke & .
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10.2 Profinite groups

Definition 10.2.1: A profinite group is a topological group that is topologically isomorphic to a closed
subgroup of a (possibly infinite) product of discrete finite groups.
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Proposition 10.2.2: For every profinite group G we have:
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(a) G ist compact und Hausdorff.

(b) Every open subgroup has finite index.
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Example 10.2.3: The topology induced by the p-adic metric on Z, is the same as that induced by the
product topology on Xn>0 Z/p"Z. Thus the additive group (Z,,+) and the group of units (Zy,-) are
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profinite groups.
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Proposition 10.2.4: Every closed subgroup of a profinite group is a profinite group with the induced
topology.

Proposition 10.2.5: Every factor group of a profinite group by a closed normal subgroup is a profinite
group with the induced topology.
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Definition 10.2.6: The profinite completion of a group G is the profinite group
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where the product extends over all normal subgroups N <1 G of finite index.

Example 10.2.7: The profinite completion 7 of the group Z is isomorphic to Hp L.
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10.3 Infinite Galois theory
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Consider a galois extension of fields L/K which may or may not be finite.
l
Proposition 10.3.1: There is a natural‘ injectiva group homomorphism d—-‘< N K(
=+ GallL/K) — X Gal(K'/K), 7~ (l)x l
s (L) Gal(L/K e
where the product extends over all intermediate fields K’ that are finite and galois over K. Its image is
the closed subgroup _
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This turns I' := Gal(L/K) into a profinite group. /
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Theorem 10.3.2: (Main Theorem of Galois theory) There are natural mutually inverse bijections

{Intermediate fields of L/K } subgroups of F}
K’ Gal(L/K')
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Here the open subgroups of I' correspond to the subfields of finite degree over K.
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