Reminder: Consider a galois extension of fields L/K which may or may not be finite.

Proposition 10.3.1: There is a natural injective group homomorphism

$$\operatorname{Gal}(L/K) \to \underset{K'}{\times} \operatorname{Gal}(K'/K), \ \gamma \mapsto (\gamma|_{K'})_{K'},$$

where the product extends over all intermediate fields K' that are finite and galois over K. Its image is the closed subgroup

$$\lim_{K'} \operatorname{Gal}(K'/K) := \{ (\gamma_{K'})_{K'} \mid \forall K''/K' : \gamma_{K''}|_{K'} = \gamma_{K'} \}.$$

This turns $\Gamma := \operatorname{Gal}(L/K)$ into a profinite group.

Here the open subgroups of Γ correspond to the subfields of finite degree over K.

Example 10.3.3: For any finite field k with algebraic closure \bar{k} , there is a natural isomorphism $\hat{\mathbb{Z}} \cong$ $\operatorname{Gal}(\overline{k}/k)$ that sends 1 to the Frobenius automorphism $x \mapsto x^{|k|}$.

For all le'cle in le'lle fink : ?/u'? ~, Ge(le'/le) [le'/le]=n' 1 ~ (x ~ x") $\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{2$ natural is margh **Example 10.3.4:** Consider a prime number *p*. L= @(r, m)

- (a) The extension $L := \mathbb{Q}(\bigcup_{n \ge 0} \mu_{p^n})/\mathbb{Q}$ has galois group $\operatorname{Gal}(L/\mathbb{Q}) \stackrel{\sim}{\cong} \mathbb{Z}_p^{\times}$.
- (b) It has a unique subfield L' with $\operatorname{Gal}(L'/\mathbb{Q}) \cong \mathbb{Z}_p$.

In Iwasawa theory one is interested in more general Galois extensions of a number field with galois group \mathbb{Z}_p , which are called \mathbb{Z}_p -extensions.

$$Ge(a(r_{p})/Q) \xrightarrow{\sim} (Z/pZ)^{\times}, s \xrightarrow{\sim} a_{y} s.K. \forall Jer_{p} : s = J^{a_{y}}$$

$$Ge(L/Q) \xrightarrow{\sim} lin(Z/pZ)^{\times} = Z_{p}^{\times} \stackrel{\sim}{=} \begin{cases} r_{p-1} \times Z_{p} & p \neq d \\ r_{z} \times Z_{z} & p = 2 \end{cases}$$

Remark 10.3.5: Many questions in number theory, among them highly interesting unproven conjectures, can be phrased as questions concerning the structure of the galois group $Gal(\overline{\mathbb{Q}})$

11 Galois theory of local fields

Throughout this chapter we fix a nonarchimedean local field K with normalized valuation v and valuation ring \mathcal{O} and finite residue field $k = \mathcal{O}/\mathfrak{m}$ of characteristic p.

11.1 Multiplicative group

Proposition 11.1.1: The reduction homomorphism $\mathcal{O}^{\times} \to k^{\times}$ is surjective and has a <u>unique</u> splitting, that is, a homomorphism $k^{\times} \to \mathcal{O}^{\times}$, $\alpha \mapsto \tilde{\alpha}$, such that $\tilde{\alpha} + \mathfrak{m} = \alpha$.

Definition 11.1.2: The element
$$\tilde{\alpha}$$
 is called the *Teichmüller representative* of α .
 f_{nuf} : Wise $|l_{k}| = q \implies k^{\times}$ cyclic f and q^{-1} .
is class on the range $X^{q^{-1}} - 1 = \prod (X - \alpha)$ is $k(X)$
where $k^{q^{-1}} - 1 = \prod (X - \alpha)$ is $O[K]$.
 $\chi_{q^{-1}} - 1 = \prod (X - \alpha)$ is $O[K]$.
 $\tilde{\alpha} \in S$
is $\tilde{\alpha} + m = \alpha$. These $\tilde{\alpha}$ are $(q^{-1}) - t$ and f into $f_{q^{-1}}$.
 $f_{q^{-1}}(0) \xrightarrow{V_{q^{-1}}} f_{q^{-1}}(k) = k^{\times}$ is agree hence k .
 $f_{q^{-1}}(0) \xrightarrow{V_{q^{-1}}} f_{q^{-1}}(k) = k^{\times}$ is agree hence k .
 $f_{q^{-1}}(0) \xrightarrow{V_{q^{-1}}} f_{q^{-1}}(k) = k^{\times}$ is agree hence k .

$$\sum_{n \to \infty}^{l \to l} \frac{1}{1} = \sum_{n \to \infty}^{l \to \infty} \frac{1}{1} = \sum_{n \to \infty}^{l \to l} \frac{1}{1} =$$