Reminder:
We fix a nonarchimedean local field K with normalized valuation v and valuation ring \mathcal{O} and finite residue field $k=\mathcal{O} / \mathfrak{m}$ of characteristic p. Take a finite galois extension L / K with galois group Γ and residue field $\ell=\mathcal{O}_{L} / \mathfrak{m}_{L}$. Let v_{L} denote the normalized valuation on L. Consider an intermediate field L^{\prime} of L / K which is galois over K. Let π denote the canonical projection $\Gamma \rightarrow \Gamma^{\prime}:=\operatorname{Gal}\left(L^{\prime} / K\right)$ with kernel $\Delta:=\operatorname{Gal}\left(L / L^{\prime}\right)$.

Definition 11.4.1: For every real number $s \geqslant-1$ the s-th ramification group of L / K in the lower numbering is

$$
\Gamma_{s}:=\left\{\gamma \in \Gamma \mid \forall a \in \mathcal{O}_{L}: v_{L}\left({ }^{\gamma} a-a\right) \geqslant s+1\right\} .
$$

Lemma 11.5.1: There exists an element $b \in L$ such that $\mathcal{O}_{L}=\mathcal{O}[b]$.
Definition 11.5.2: For any $\gamma \in \Gamma$ we set $i_{L / K}(\gamma):=v_{L}(\gamma b-b)$.

Proposition 11.5.4: For any $\gamma^{\prime} \in \Gamma^{\prime}$ we have

Construction 11.5.5: We are interested in the function

$$
\left[r_{0}: r_{x}\right]=\frac{\left|r_{0}\right|}{\left|r_{x}\right|}
$$

$$
\eta_{L / K}:\left[-1, \infty\left[\longrightarrow \left[-1, \infty\left[, \quad s \leftrightarrow \int_{0}^{s} \frac{d x}{\left[\Gamma_{0}: \Gamma_{x}\right]} . \quad-1<x<0 ; r_{x}=r_{0}\right.\right.\right.\right.
$$

Here for $s<0$ we interpret \int_{0}^{s} as $-\int_{\omega_{s}}^{0}$, and $\left[\Gamma_{0}: \Gamma_{x}\right]$ as $\left[\Gamma_{x}: \Gamma_{0}\right]^{-1}$ for $x<0$.
Proposition 11.5.6: The function $\eta_{L / K}$ is strictly monotone increasing and bijective.

$$
\begin{aligned}
& \eta_{c / 4}(-1)=\int_{0}^{-1} \frac{d x}{\left[r_{0}: r_{x}\right]}=-\int_{-1}^{0} \frac{d x}{1}=-1 \quad \text { and } \eta_{[/ k}^{1} \geqslant \frac{1}{|r|} \text { anmelem } \\
& \Rightarrow \lim _{s \rightarrow \infty} \operatorname{Zukk}(s)=\infty . \\
& \text { Proposition 11.5.7: For any } s \in[-1, \infty[\text { we have }
\end{aligned}
$$

$$
\eta_{L / K}(s)=\left(\frac{1}{\left|\Gamma_{0}\right|} \cdot \sum_{\gamma \in \Gamma} \min \left\{i_{L / K}(\gamma), s+1\right\}\right)-1
$$

$\therefore \theta(s)$ cenkimion
Poof: $\theta(0)=\frac{1}{\left|r_{0}\right|} \cdot \sum_{\gamma \in T} \operatorname{nin}\left[i_{L / k}(\gamma), 1\right\}-1=\frac{1}{\left|r_{0}\right|} \cdot \neq \underbrace{\left\{_{\gamma \in T} \mid i_{L / L}(\gamma) \geq 1\right\}}_{r_{0}}-1$

$$
\begin{aligned}
& =\frac{\left|r_{s}\right|}{\left|r_{0}\right|}=\frac{1}{\left[r_{0}: r_{s}\right]}=z_{l / K}^{l}(s) \quad \rightarrow r_{L / K}=\theta . \quad \text { ged. }
\end{aligned}
$$

Theorem 11.5.8: (Herbrand) For any $s \in\left[-1, \infty\left[\right.\right.$ we have $\pi\left(\Gamma_{s}\right)=\Gamma_{\eta_{L / L^{\prime}}(s)}^{\prime}$.

Clain: $i_{\text {L'/K }}\left(\gamma^{\prime}\right)-1=2 L ル\left(i_{L K}(\gamma)-1\right)$.
$P_{\text {ouf: }}$ set $m:=i_{l / k}(f)$. Th $\forall \delta \in \Delta$:
eithor $i_{L / L}(\delta) \geq m \Rightarrow i_{L / L}(\delta \delta) \geq m \Rightarrow \quad i_{L / L}(\gamma \delta)=m$ by the charieeff f. ar $i_{L_{4}(\delta)}<m \Rightarrow i_{L_{4}(\gamma d)}=i_{L / 6}(\delta)<m$
$\Rightarrow 2$ Sock cand $i_{L / K}(x)=\min \left\{i_{L / K}(\delta), \mathrm{m}\right\}$.

$$
\gamma^{\prime} \in \pi\left(r_{s}\right) \Longleftrightarrow \gamma \underset{\neq \underset{\sim}{u}, r, 3}{ }
$$

$$
\stackrel{L}{=}=L_{L / L}^{\prime}(m-1)+1
$$

ged.

 ged

$$
\begin{aligned}
& \Rightarrow i_{L / \varepsilon}\left(\gamma^{\prime}\right)=\frac{1 \cdot r}{e_{L / L}} \cdot \sum_{\delta \in \Delta} i_{u_{k}}(\gamma \delta)=\frac{1}{e_{U L}} \cdot \sum_{\delta \in \Delta} \operatorname{in}\left\{i_{L_{/ K}}(\delta), m\right\} \\
& =\frac{1}{\mid \Delta_{0} l} \cdot \sum_{\delta \in \Delta} \dot{i}\left\{i_{L /}(\lambda), m_{N}^{k+1}\right\} \\
& \text { Lo } \forall 5 \geq-1 \text { : } \\
& 10.5 .7 \mathrm{he} \mathrm{~L} / \mathrm{L}^{\prime}
\end{aligned}
$$

Proposition 11.5.9: We have $\eta_{L / K}=\eta_{L^{\prime} / K} \circ \eta_{L / L^{\prime}}$.
Ping: $\eta_{\text {UK }}(0)=0=\eta_{C^{\prime} / 4}(0)=\eta_{L^{\prime} / K}\left(\eta_{L / L}(0)\right)$
For $s \notin \mathbb{Q}: \underbrace{1}_{l / K}(s)=\frac{1}{\left[r_{0}: r_{s}\right]}=\frac{\left|r_{s}\right|}{\left|T_{0}\right|}=\frac{\left|r_{s}\right|}{e_{L / K}}(*)$ With $t:=\eta_{c / L^{\prime}}(s)$ we hans

$$
\begin{aligned}
& 1 \rightarrow \underbrace{\Delta n r_{s}}_{\Delta} \rightarrow r_{s} \rightarrow r_{t}^{\prime} \rightarrow 1 \text { east }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(Z_{L / K} \circ \eta_{L} C^{\prime}\right)^{\prime}(\sigma) \text {. }
\end{aligned}
$$

\Rightarrow ind.
Definition 11.5.10: For any real number $t \geqslant-1$ we define the t-th ramification group of L / K in the upper numbering as $\Gamma^{t}:=\Gamma_{\eta_{L / K}^{-1}(t)}$.
Proposition 11.5.11: For any $t \in\left[-1, \infty\left[\right.\right.$ we have $\pi\left(\Gamma^{t}\right)=\left(\Gamma^{\prime}\right)^{t}$.
PHI: Wine $\left.t=2 u / k^{(s)}\right)$ and $\pi\left(r^{t}\right)=\pi\left(r_{s}\right)=r_{s^{\prime}}^{1}=\left(r^{\prime}\right)^{t}$

$$
\Leftrightarrow r_{i / k}^{-1}(t)=5
$$

we get:
$t=r^{\prime} / u\left(s^{\prime}\right) b-s^{i}=r_{L /}(s)$

Now consider an arbitrary galois extension L / K which is not necessarily finite.
Definition 11.5.12: For any real number $t \geqslant-1$ we define the t-th ramification group of L / K as

$$
\operatorname{Gal}(L / K)^{t}:=\underset{\overleftarrow{L^{\prime}}}{\lim } \operatorname{Gal}\left(L^{\prime} / K\right)^{t}
$$

where the limit extends over all intermediate fields L^{\prime} that are finite and galois over K.
Proposition 11.5.13: For any intermediate field L^{\prime} of L / K that is galois over K and any real number $t \geqslant-1$ the restriction induces a surjection $\operatorname{Gal}(L / K)^{t} \rightarrow \operatorname{Gal}\left(L^{\prime} / K\right)^{t}$.

Shan: $\mathrm{Cul}(L / L) \rightarrow \operatorname{Cul}\left(L^{\prime} / L\right)$

$$
\begin{aligned}
& \text { For all } L^{\prime \prime} / L^{\prime} / k \text { sadi hin: } \\
& \operatorname{Gel}\left(L^{\prime \prime} / L\right)^{t} \rightarrow \operatorname{Ge}\left(L^{\prime} / 4\right)^{t} .
\end{aligned}
$$

Tu soche i hilkund.

Nom tan $\underset{r^{i}}{\text { E. }}$.

