
First consider a commutative unitary ring R and a group G. Then giving an R-module with a left G-action is equivalent to giving a left module over the group ring $R[G]$. Giving a G-equivariant homomorphism of such R-modules is equivalent to giving a homomorphism of left $R[G]$-modules. We will always mean left modules below.

Proposition-Definition 10.4.1: To any $R[G]$-module M we associate
(a) the R-module of G-invariants $M^{G}:=\{m \in M \mid \forall g \in G: g m=m\}$, and
(b) the R-module of G-coinvariants $M_{G}:=M / \sum_{g \in G}(g-1) M$.

Here
(c) M^{G} is the largest $R[G]$-submodule of M, on which G acts trivially; and
(d) M_{G} is the largest $R[G]$-factor module of M, on which G acts trivially.

Any $\underline{R[G] \text {-module homomorphism } f: M \rightarrow N \text { induces } R \text {-module homomorphisms } . ~(1)}$

$$
\forall m \in \Lambda \quad \forall g \in C:
$$

$$
f^{G}: M^{G} \rightarrow N^{G}
$$

$$
\begin{array}{ll}
m \mapsto f(m) \quad[m] & {[f(m)]}
\end{array}
$$

$$
[(g-1) m] \sim[f((g-1)(n)]=[(g-1)(f(m))]=[0]
$$

Proposition 10.4.2: Let G be a finite group of order \boldsymbol{d}, such that \boldsymbol{d} is invertible in R. Then for any exact sequence of $R[G]$-modules $M \xrightarrow{\Omega} N \rightarrow L$ the induced sequences
$M^{G} \xrightarrow{\stackrel{\rho}{b}_{b}^{b}} N^{G} \xrightarrow{h^{\text {b }}} L^{G} \quad$ and $\quad M_{G} \xrightarrow{f_{G}} N_{G} \xrightarrow{h_{G}} L_{G}$
are exact.
Prof, fut $t:=\frac{1}{d t} \cdot \sum_{g \in h} g \in R[n] . \Rightarrow \forall g^{\prime} \in L ; g^{\prime} t=t g^{\prime}=t$
(a) $\forall m \in \cap: \quad \operatorname{tm} \in \Pi^{a}$
(b) $\forall m \in n^{h}: ~ t m=\frac{1}{a} \cdot \sum_{g \in G} g m=\frac{1}{d!} \sum_{g} m=m$.

Clem: u^{a} of $f^{a}=0$.
The $n \in \operatorname{lev}\left(h^{6}\right)$.

$$
\Rightarrow \quad h(n)=0
$$

$\Rightarrow n=f(m)$ for sene $m \in \Pi$.
$\Rightarrow n^{(n)}=t n=t f(m)=f(t m)$
with time $\boldsymbol{M}^{\varepsilon}$ by (a).
$\Rightarrow \operatorname{lan}\left(4^{a}\right)=\dot{n}\left(f^{a}\right)$.
chan: h_{C} of $f_{G}=0$.
Tan n $[n] \in N_{C}$ wise $h_{G}([n])=0=[h(n)]$
$\Rightarrow h(n)=\sum_{g \in G}\left(s-1 / \ell_{g}\right.$ for semen $l_{C}=L$
$\Rightarrow h\left(t_{n}\right)=\sum_{j \in G}^{j \in \underbrace{t(s-1)}_{0} l_{j}}=0$
$\Rightarrow t_{n}=f(m)$ 加 ann $m \in \cap$.
$\Rightarrow[u] \stackrel{(b)}{=} t[n]=\left[t_{n}\right]=[f(m)]=f_{G}([m))$
$\Rightarrow \operatorname{lar}\left(h_{a}\right)=$ in $\left(f_{a}\right)$.
ged.

Now consider an integer n and a field K of chacteristic not dividing n. Let L / K be the maximal abelian galois extension whose galois group has exponent dividing n.

Proposition 10.4.3: If K contains all n-th roots of unity μ_{n}, then L is generated by the n-th roots of all elements of K^{\times}and there is a natural isomorphism

$$
\begin{array}{r}
\operatorname{Gal}(L / K) \xrightarrow[\longrightarrow]{\sim} \operatorname{Hom}\left(K^{\times}, \mu_{n}\right), \\
\gamma \longmapsto\left(x \mapsto \frac{\gamma \sqrt[n]{x}}{\sqrt[n]{x}}\right)
\end{array}
$$

for any choice of $\sqrt[n]{x} \in L$.
 sh $\left.\forall x \in K^{*}: K(n) x\right) / U$ is coshict equate dimes n.

Mop well defined:

$$
\begin{aligned}
& H \cong{ }_{i}^{K} C_{n_{i}} \quad n_{i}(G \\
& \text { then }\left(l t, r_{v}\right) \cong x_{i} \operatorname{stm}\left(C_{n i}, r_{n}\right) \cong X_{i} C_{n_{i}} \\
& \rightarrow \text { emgh to ahen terx } \\
& \text { Gal (L/Le) } \rightarrow \text { than }\left(b, r_{n}\right) \text {. } \\
& \text { Nedure do } n=\text { purie }=\rho \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { F. } \rightarrow[x] \in \operatorname{Lin}(\overline{2}):[x] \in K^{x} /\left(x^{k}\right)^{p} \text { is minno } \Rightarrow k(\sqrt[P]{x} / * K \\
& \Rightarrow \exists_{\gamma} \in G d(L / u): \sigma_{x} \not \ell^{\beta} \sqrt{x} \\
& \text { so hans is engitive. } \\
& \rightarrow \text { Cundidili! } \\
& \text { ged }
\end{aligned}
$$

Proposition 10．4．4：In general，if $n=p$ is a prime，the above map induces a natural isomorphism

$$
\operatorname{Gal}(L / K) \cong \operatorname{Hom}\left(K\left(\mu_{p}\right)^{\times}, \mu_{p}\right)_{\operatorname{Gal}\left(K\left(\mu_{p}\right) / K\right)}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{Ge}\left(L^{\prime} / L\right) \cong \operatorname{Gal}\left(C^{\prime} / L\right) \rtimes \Delta \text {. } \\
& \begin{aligned}
& \text { L/K alvai of aque I } P \\
\Rightarrow & L K^{\prime} / k^{\prime} \text { absi } t \text { same IP }
\end{aligned} \\
& \Rightarrow L^{\prime} \subset L^{\prime} \\
& \mathrm{Ge}\left(L ' / L^{\prime}\right) \rightarrow \mathrm{Ge}(L / U) \\
& \text { 〕 } 111 \Rightarrow \\
& \text { cal (} \left.{ }^{\prime} / \ln ^{\prime}\right)
\end{aligned}
$$

K^{\prime} ，｜abdis $K_{n}^{\prime} L=K$

let L＇／じ／LK＇beten insm．isin hed wik cul（ $\left.L^{\prime \prime} / L^{\prime}\right)=\operatorname{col}\left(C^{\prime} / L^{\prime}\right)$ \Rightarrow しK＇くじ。

$$
\Rightarrow \text { ahki } \Rightarrow \cos \left(L^{\prime \prime} / 4\right) \cong \operatorname{col}\left(L^{\prime \prime} / L^{\prime}\right)<\Delta
$$

 wher t tomair IP．

$$
\begin{aligned}
& \Rightarrow \tilde{L}=L \text { and } L_{c}^{\prime}=l^{\prime \prime} \text {. } \\
& \text { So } \operatorname{cose}(L / K) \triangleq \cos \left(L K^{\prime} / u^{\prime}\right)=\cos \left(L^{\prime \prime} / K^{\prime}\right)=\operatorname{che}\left(L^{\prime} / U^{\prime}\right) \Delta \\
& 10.43 \Rightarrow \quad \cong \tan \left(k^{1 x}, f_{p}\right)_{\Delta}
\end{aligned}
$$

gens.
11.6 Abelian extensions of \mathbb{Q}_{p}

Fix a prime number p.
Proposition 11.6.1: For any $m \geqslant 1$ and any primitive p^{m}-th root of unity ζ we have:
(a) $\mathbb{Q}_{p}\left(\mu_{p^{m}}\right) / \mathbb{Q}_{p}$ is totally ramified of degree $(p-1) p^{m-1}$.
(b) $\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p^{m}}\right) / \mathbb{Q}_{p}\right) \cong\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$.
(c) $\mathbb{Z}_{p}[\zeta]$ is the valuation ring of $\mathbb{Q}_{p}\left(\mu_{p^{m}}\right)$.
(d) $1-\zeta$ is a prime element of $\mathbb{Z}_{p}[\zeta]$ with norm p.
 (p) is Lake, manihid, $(p)=(1-Y)^{p^{n-1} \cdot(p-1)}$

$$
G_{\mathbb{a}_{(r, m)}}=\mathbb{Z}[\zeta]
$$

Proposition 11.6.2: The maximal abelian extension of \mathbb{Q}_{p} whose galois group has exponent p has degree p^{3} if $p=2$, respectivel p^{2} 共 $p>2$.
Propi $p=2: \operatorname{col}\left(U / \sigma_{p}\right) \doteq \operatorname{kr}\left(\theta_{p}^{x}, r_{p}\right)=\ln \left(a_{2}^{k} /\left(a_{2}^{k}\right)^{2}, r_{2}\right)$

$$
\begin{aligned}
& \simeq \operatorname{ram}_{\mathbb{F}_{2}}\left(\mathbb{F}_{2}^{3}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}^{3} . \\
& \Rightarrow Q_{2}^{k} /\left(Q_{2}^{k}\right)^{2} \cong C_{2} \times C_{2} \times C_{2} \\
& p>2: k^{\prime}:=Q_{p}\left(r_{p}\right), \Delta^{\prime}:=\operatorname{anc}\left(k^{\prime} / a_{p}\right) \cong m_{p}^{*} \\
& G_{k^{\prime}}=\tau_{p}[y] \supset m=(\imath-T) \\
& \left(k^{\prime}\right)^{k}=\underline{(1-y)^{2}} \times r_{p-1} \times r_{p} \times\left(1+m^{2}\right) \\
& 1+\mathrm{m}^{2} \frac{\operatorname{los}}{\frac{\sim}{\operatorname{eng}}} \mathrm{~m}^{2} \\
& G_{k^{\prime}} \triangleq Z_{p}^{p-1} \text { an } Q_{p} \text {-umba } \\
& \Rightarrow m^{2} \cong \lambda_{p}^{p-1} \cdots \cdots \cdot \\
& \Rightarrow\left(k^{\prime}\right)^{x} /\left(\left(k^{\prime}\right)^{x}\right)^{p} \cong c_{p} \times 1 \times \mu_{p} \times m^{2} / p \cdot m^{2} \\
& =\text { on top-nedr que of } d \text { inimpt } t^{1} \text {. } \\
& \Rightarrow \quad \tan \left(\left(x^{\prime}\right)^{\prime k}, r_{p}\right)=
\end{aligned}
$$

