Reminder: Let G be a finite cyclic group of order n with a generator g. For a commutative ring R we are interested in the ideal $I_G := (g - 1)$ of the group ring R[G] and the element

$$= (1 - \frac{1}{2}) \quad N_G := \sum_{g' \in G} g' \in R[G].$$

Definition 12.1.1: For any R[G]-module M we define the *Tate cohomology* groups:

$$\begin{array}{rcl}
\hat{H}^0(G,M) &:= M^G/N_GM, \\
\hat{H}^{-1}(G,M) &:= \ker(N_G|M)/I_GM.
\end{array}$$

Definition 12.1.2: If these are both finite, the *Herbrand quotient* of M is defined as

$$h(G,M) := \frac{|\hat{H}^0(G,M)|}{|\hat{H}^{-1}(G,M)|}.$$

Consider a finite cyclic field extension L/K with Galois group Γ . For any representation M of Γ we write

 $\hat{H}^i(L/K,M) := \hat{H}^i(\Gamma,M).$

Proposition 12.2.2: We have $\hat{H}^i(L/K, L) = 0$ for each *i*.

For the rest of this chapter we assume that K is a nonarchimedean local field with normalized valuation
$$v_K$$

and valuation ring \mathcal{O}_K and residue field $k = \mathcal{O}_K/\mathfrak{m}_K$ of characteristic p. We let v_L denote the normalized
valuation on L and $\ell = \mathcal{O}_L/\mathfrak{m}_L$ its residue field.
Proposition 12.2.5: If L/K is furthanishing then:
(a) The norm map $\operatorname{Nm}_{L/K}: \mathcal{O}_L^{\times} \to \mathcal{O}_K^{\times}$ is surjective.
(b) We have $\hat{H}^i(L/K, \mathcal{O}_L^{\times}) = 1$ for each i.
(c) We have $\hat{H}^0(L/K, L^{\times}) \in \mathbb{Z}/[L/K]\mathbb{Z}$.
 $\mathcal{O}_L + \mathcal{U}_L = 1 \text{ for } \mathcal{U}_L =$

The
$$\chi \in O_{k}^{\times} = (O_{k}^{\times})^{\Gamma}$$

The $\forall n \geq 0 : [\kappa] = 1 \text{ in } \hat{H}^{\circ}(O_{k}^{\kappa}/u_{l}^{*})$
i.e. $\exists \gamma_{n} \in O_{k}^{\times} : \kappa \equiv N_{n} | |\kappa \rangle_{n} \text{ and } m_{l}^{*}$.
 $\ldots \equiv \exists \gamma_{k} \in O_{k}^{\times} : \kappa \equiv N_{n} | |\kappa \rangle_{n} \text{ and } m_{l}^{*}$.
 $f = \hat{H}^{\circ}(O_{k}^{\kappa}) = 1$.
By $(H) = 1$.

By
$$(k)$$
 we have $1 - i \hat{H}^{\circ}(L^{k}) - i \tilde{Z}/u \tilde{d} - i \tilde{H}^{\circ}(\tilde{G}_{L}^{i}) - i \tilde{1}$
Also $L^{\times} = \pi^{2} \times \tilde{G}_{L}^{\times} = \tilde{d} \times \tilde{G}_{L}^{\times}$
this sector
 $= \hat{H}^{\circ}(L^{k}) \stackrel{d}{=} \hat{H}^{i}(\tilde{d}) \times \hat{H}^{\circ}(\tilde{G}_{L}^{\times})$
 $Z_{l-1}^{il} \tilde{d}$

Proposition 12.2.6: For any cyclic L/K we have

$$\begin{split} |\hat{H}^{0}(L/K,L^{\times})| &= [L/K]. \\ \begin{split} \|\hat{H}^{0}(L/K,L^{\times})| &= [L/K]. \\ \\ \|\hat{H}^{0}(L/K,L^{\times})| &= [L/K]. \\ \\ \|\hat{H}^{0}(L/K,L^{\times})| &= 1. \\ \\ \\ \|\hat{H}^{0}(L/K,L^{\times})| &= 1. \\ \\ \|\hat{H}^{0}(L/K)| &= 1. \\ \\ \|\hat{H}^{0}(L^{\times})| &= 1$$

12.3The reciprocity isomorphism

Now we fix a maximal unramified extension \tilde{K}/K . We take a finite Galois extension L/K and set $\tilde{L} := L\tilde{K}$. Then \tilde{L}/K is Galois and we have a natural surjection

 d_K : $\operatorname{Gal}(\tilde{L}/K) \twoheadrightarrow \operatorname{Gal}(\tilde{K}/K) \cong \operatorname{Gal}(\bar{k}/k) \cong \hat{\mathbb{Z}}.$

We are interested in the set of *generalized Frobenius elements*

$$\operatorname{Frob}_{\tilde{L}/K} := \left\{ \sigma \in \operatorname{Gal}(\tilde{L}/K) \mid d_K(\sigma) \in \mathbb{Z}^{\geq 1} \right\}.$$

Clearly this subset is closed under multiplication. Take $\sigma \in \operatorname{Frob}_{\tilde{L}/K}$.

Proposition 12.3.1: The subfield $L_{\sigma} := \tilde{L}^{\langle \sigma \rangle}$ is finite over K and \tilde{L}/L_{σ} is unramified. $\sim k$ This denotes the subfield $L_{\sigma} := \tilde{L}^{\langle \sigma \rangle}$ is finite over K and \tilde{L}/L_{σ} is unramified. $ae(\tilde{c}/u) < ae(c/u) \times ae(\tilde{u}/u)$ $ae(\tilde{c}/u) = \overline{c} \rightarrow \frac{1}{2} \rightarrow \frac{1}{2}$ 14

Proposition 12.3.2: The residue class

Proposition 12.3.3: This defines a multiplicative map $r_{\tilde{L}/K}$: $\operatorname{Frob}_{\tilde{L}/K} \longrightarrow K^{\times} / \operatorname{Nm}_{L/K} \mathcal{O}_{L}^{\times}$. Lee Nuice Ch. IV Sr 12.3.3 Theorem 12.3.4: There exists a unique homomorphism $r_{L/K} \colon \underbrace{\operatorname{Gal}(L/K)}_{\bullet} \longrightarrow \underbrace{K^{\times}/\operatorname{Nm}_{L/K}L^{\times}}_{\bullet}$ with $r_{L/K}(\sigma) = [\operatorname{Nm}_{L_{\tilde{\sigma}}/K}(\pi_{L_{\tilde{\sigma}}})]$ for any $\tilde{\sigma} \in \operatorname{Frob}_{\tilde{L}/K}$ with $\tilde{\sigma}|L = \sigma$ and any uniformizer $\pi_{L_{\tilde{\sigma}}}$ of $L_{\tilde{\sigma}}$. My: Welldebil: let &, & be the litts of & = Hung dide by an ele if the ([/L] = movied $f_{\sigma} i \neq d_{V_{\sigma}}(\overline{\sigma}) = d_{V_{\sigma}} |\overline{\sigma}'| \quad \text{for } \overline{\sigma} = \overline{\sigma}' - \sigma_{V_{\sigma}}.$ En VLVA: du (=) < du (=). The G'= G. Z R ZE Tul Zlue with Z (L=id. $= \sum_{i=1}^{n} \sum$

Proposition 12.3.5: The map $r_{L/K}$ is an isomorphism if L/K is unramified.

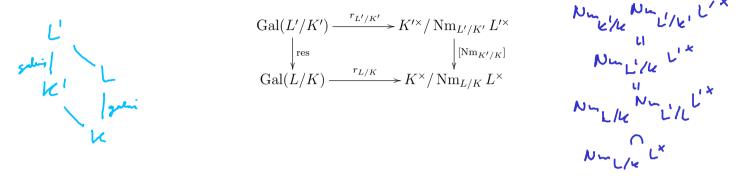
$$T_{u} = N_{u} \binom{(G_{L}^{k})}{(U_{L}^{k})} = O_{Le}^{k} = u^{2} \qquad u = [L/k]$$

$$= N_{u} \binom{(U_{L}^{k})}{(U_{L}^{k})} = O_{Le}^{k} \cdot \overline{u}^{u} \qquad u = [L/k]$$

$$\overline{u} = (L/k) \qquad \overline{u}^{k} \binom{(L^{k})}{(L^{k})} = O_{Le}^{k} \cdot \overline{u}^{u}$$

$$\overline{u} = (L/k) \qquad \overline{u}^{k} \binom{(L^{k})}{(L^{k})} \qquad \overline{u}^{k} \binom$$

Proposition 12.3.6: Consider finite extensions L'/L/K and L'/K'/K such that both L/K and L'/K' are Galois. Then we have the following commutative diagram:



Theorem 12.3.7: The map $r_{L/K}$ induces an isomorphism

$$r_{L/K}: \operatorname{Gal}(L/K)_{ab} \xrightarrow{\sim} K^{\times}/\operatorname{Nm}_{L/K} L^{\times} = \operatorname{H}^{\circ}(L/k, L^{\times})$$

for the maximal abelian quotient $\operatorname{Gal}(L/K)_{ab}$ of $\operatorname{Gal}(L/K)$.