Reminder:

Let K be a nonarchimedean local field with normalized valuation vx and valuation ring Ok and residue

field £ = O /mg of characteristic p. Let L/K be a finite Galois extension with Galois group I'.

Theorems 12.3.4 and 12.3.7: There exists a natural isomorphism a_G
{TL/K: Gal(L/K)a — K*/Nmyx L* S

12.4 The existence theorem

Proposition 12.4.1: For any finite Galois extension L/K the subgroup Nmy,/x L* is closed of finite index
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Theorem 12.4.2: For any closed subgroup H C K* of finite index there exists a finite Galois extension

(Proof only for char(K) = 0.) .
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Theorem 12.4.3: There is a natural isomorphism //c_l./l-t 2 W cleX

“ ' L bk wtx.
Gal(K*™/K) = (K*), / - -

where the profinite completion (K*)"is unnaturally isomorphic to 7 x Ox.
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Corollary 12.4.4: (a) The map L — N := Nmy/x L* is a bijection from the set of finite abelian

extensions of K up to isomorphism to the set of closed subgroups of finite index of K*.

(b) We have P : — - —
LICL2 < NLlDNL27 .
NL1L2 = NL1 mNLZ, and I'LK > ? » é‘c—

NL1ﬂL2 = NL1NL2'
(c) A finite abelian extension L/K is unramified if and only if O} C Np.

(d) The isomorphism T’Z/IKI K* /N — Gal(L/K) sends the coset of any uniformizer of K to a Frobe-
nius element. // é
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13 Global class field theory
place. £ L

We fix a number field K and let M My denote the set of absolute values of K up to equivalence. We let S
denote the subset of archimedean absolute values and write v € M. K \ Ss for the respective normalized

valuation.

13.1 Ideles

Consider a finite abelian extension L /K with Galois group I". Let I', < T" denote the decomposition group
at v € Mg and I, < T, the inertia group if v & S.
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Proposition 13.1.1: The embeddings I', < I" and the local reciprocity isomorphisms induce a surjective
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Definition 13.1.2: The group of ideles of K (from “id. el.” for “ideal elements”) is the subgroup

Iy = {(%)v e X K} ‘V’v: T, € OIX(U}.
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It is endowed with the topology for which the subgroups

‘ ;:{xvaXKX|VU¢S xUEOX}
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for all finite subsets S C My with So, C S are open and carry the product topology. Thus for any choice
of open subsets U, C K such that U, = Ok, for almost all v, the subset U = X U, is open, and varying
the U, these subsets ts form a basis for tho topology on Iy.

Caution 13.1.3: This topology is not induced from the product topology on X K.
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Proposition 13.1.4: The local norms induce a continuous homomorphism

NmL/K: IL E— [K
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Proposition 13.1.5: The embeddings I', < I" induce a continuous surjective homomorphism I — I’

that vanishes on Nmy g I7.
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Describing all abelian extensions of K thus translates into describing all possible subgroups that can occur
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as kernel of the surjection I — I'. Varying L we obtain a surjective homomorphism

—

| Ix — Gal(Kab/Kﬁ

and it is equivalent to describe its kernel.
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13.2 Idele classes le o

We identify K* with its image in /i under the diagonal embedding = — (z,z,...).

Definition 13.2.1: We call C := Ix/K* the group of idele classes, and we endow Cx with the quotient
topology induced from [y

Proposition 13.2.2: The natural surjective homomorphism

Ix —— Frac(Ok) := {fractional ideals of Ok},
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lies in the following natural commutative diagram with exact rows and columns: ﬂ‘ I
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In particular there is a natural exact sequence

1 05 I Cx Cl(Of) — 1.



Definition 13.2.3: The norm of an idele z = (z,), € Ik is defined as

it = T k™= IT ol T ol
V¥Z S0 K,=R = uk/é? %ﬁ@

The subgroup of ideles of norm 1 is denoted [ 1E£'
Theorem 13.2.4: (a) The group K~ is a discrete subgroup of Ij;.  ~y CL{ H—-—..,.A«i

(b) The quotient C} := I}./K* with its induced topolo'gy is compact.

(c) There are topological group isomorphisms Ix = [}, x R and Cx = C} x R.



