Reminder:
We fix a number field K and let M_{K} denote the set of absolute values of K up to equivalence. Let S_{∞} denote the subset of archimedean absolute values and $v \in M_{K} \backslash S_{\infty}$ the respective normalized valuation.
Definition 13.1.2: The group of ideles of K (from "id. el." for "ideal elements") is the subgroup

$$
I_{K}:=\underbrace{\{\left(x_{v}\right)_{v} \in \underset{v \in M_{K}}{X} K_{v}^{\times} \mid \underbrace{\left.\forall^{\prime} v: x_{v} \in \mathcal{O}_{K_{v}}^{\times}\right\}} .=\underbrace{\square}_{\imath}\left(k_{v}^{k} \mid \mathcal{O}_{k_{u}}^{k}\right), ~}
$$

It is endowed with the topology for which the subgroups

$$
I_{K}^{S}:=\left\{\left(x_{v}\right)_{v} \in \underset{v \in M_{K}}{\times} K_{v}^{\times} \mid \forall v \notin S: x_{v} \in \mathcal{O}_{K_{v}}^{\times}\right\} \cong \underbrace{}_{v \in S} \times K_{v}^{\times} \times \underset{v \in M_{K} \backslash S}{\times} \mathcal{O}_{K_{v}}^{\times}
$$

for all finite subsets $S \subset M_{K}$ with $S_{\infty} \subset S$ are open and carry the product topology.
Definition 13.2.1: We embed \underline{K}^{\times}into I_{K} via the diagonal embedding $x \mapsto(x, x, \ldots)$. We call $C_{K}:=I_{K} / K^{\times}$the group of dele classes, and endow C_{K} with the quotient topology induced from I_{K}.

Proposition 13.2.2: There is a natural commutative diagram with exact rows and columns:

Definition 13.2.3: The norm of an idele $\underline{x}=\left(x_{v}\right)_{v} \in I_{K}$ is defined as

$$
\begin{aligned}
& |\underline{x}|:=\prod_{v \notin S_{\infty}} \underline{\left|k_{v}\right|^{-v\left(x_{v}\right)}} \cdot \prod_{K_{v} \approx \mathbb{R}}\left|x_{v}\right| \cdot \prod_{K_{v} \simeq \mathbb{C}}\left|x_{v}\right|^{2} . \text { as } \text { 隹mo: } I_{K} \rightarrow \mathbb{R}^{>0} \\
& \mathrm{~m} 1 \text { is denoted } I_{K}^{1} .
\end{aligned}
$$

The subgroup of ideles of norm 1 is denoted I_{K}^{1}.
Theorem 13.2.4: (a) The group K^{\times}is a discrete subgroup of I_{K}^{1}.
(b) The quotient $C_{K}^{1}:=I_{K}^{1} / K^{\times}$with its induced topology is compact.
(c) There are topological group isomorphisms $I_{K} \cong I_{K}^{1} \times \mathbb{R}$ and $C_{K} \cong C_{K}^{1} \times \mathbb{R}$.

$$
\begin{aligned}
& \text { (} I_{6}^{1} \cap I_{k}^{5} \text {) } / \sigma_{k}^{k} \text { arpat ltamomph } \\
& \mathrm{Ce}\left(\mathrm{O}_{k}\right) \text { bis } \Rightarrow \mathrm{I}_{n}^{7} / \mathrm{K}^{k} \text { cors timet. }
\end{aligned}
$$

13.3 The reciprocity isomorphism

Now we return to L / K finite abelian with Galois group Γ.
Proposition 13.3.1: The norm map $I_{L} \rightarrow I_{K}$ induces a well-defined homomorphism (col $=\underset{\sim}{\text { L }} L_{\omega}$ $\underset{\uparrow}{C_{L}} \underset{\ell}{\longrightarrow} \quad C_{k} \quad \operatorname{Nm}_{L / K}: C_{L} \longrightarrow C_{K}$.

$L^{K} \xrightarrow{N-L L_{n}} k^{k}$

$$
\begin{aligned}
& \text { dem } \begin{array}{l}
\forall v \in \Lambda_{\varepsilon}: \\
\\
\forall x \in K
\end{array} \\
& \frac{\pi}{v} k_{v}^{x} \rightarrow \mathbb{N}_{u} \\
& \vdots
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{dut}_{k_{v}}\left(x \cdot \log _{k} k_{v} \neg l_{k} k_{k}\right) \\
& =\prod_{\omega / L} d_{k_{N}}\left(k \cdot: L_{\omega} \rightarrow L_{L}\right) \\
& =\prod_{\omega / L}^{U / L} N_{L_{\omega} / v_{c}}(k)
\end{aligned}
$$

Big Theorem 13.3.2: The homomorphism $I_{K} \rightarrow \Gamma$ from 13.1.5 induces an isomorphism

$$
C_{K} / \operatorname{Nm}_{L / K} C_{L} \xrightarrow{\sim} \Gamma
$$

Vecipuish >ampler.

Theorem 13.3.3: (a) The map $L \mapsto \mathcal{N}_{L}:=\mathrm{Nm}_{L / K} C_{L}$ is a bijection from the set of finite abelian extensions of K up to isomorphism to the set of closed subgroups of finite index of C_{K}.
(b) We have

$$
\frac{L_{1} \subset L_{2}}{\substack{\mathcal{N}_{L_{1}} \supset \mathcal{N}_{L_{2}} \\ \mathcal{N}_{L_{1} L_{2}}}}=\mathcal{N}_{L_{1} \cap \mathcal{N}_{L_{2}},}, ~ a n d ~
$$

Remark 13.3.4: The local behavior of an abelian extension L / K at a place $v \in M_{K}$ can be read off from the global information by pullback under the embedding

$$
K_{v}^{\times} \longleftrightarrow C_{K}, \quad x_{v} \mapsto\left[\left(1, \ldots, 1, x_{v}, 1, \ldots\right)\right] .
$$

Corollary 13.3.5: There is a natural isomorphism
$k=C a \Rightarrow C l\left(O_{k}\right)=0$
$I_{\mathbb{Q}}^{\int_{0}}=\mathbb{R}^{x} \times \prod_{p}^{x}=\mathbb{R}^{k} \times \hat{巴}^{x}$

$$
\Rightarrow\left(c_{G}\right)^{n} \cong \hat{e}^{x}
$$

Remark 13.3.6: In the case $K=\mathbb{Q}$ the embedding $\hat{\mathbb{Z}}^{\times} \hookrightarrow I_{\mathbb{Q}}$ induces an isomorphism

$$
\operatorname{Gal}\left(\mathbb{Q}^{\mathrm{ab}} / \mathbb{Q}\right) \cong\left(C_{\mathbb{Q}}\right)^{\wedge} \cong \hat{\mathbb{Z}}^{\times} .
$$

This isomorphism is the reciprocal (!) of that induced by the cyclotomic character:

$$
\underline{\operatorname{Gal}\left(\mathbb{Q}^{\mathrm{ab}} / \mathbb{Q}\right)=\operatorname{Gal}\left(\mathbb{Q}\left(\cup_{n} \mu_{n}\right) / \mathbb{Q}\right) \cong \hat{\mathbb{Z}}^{\times}} .
$$

