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Reminder:

We fix a number field K and let My denote the set of absolute values of K up to equivalence. Let S,

e —————————
denote the subset of archimedean absolute values and v € Mg \ S, the respective normalized valuation.

Definition 13.1.2: The group of ideles of K is the subgroup

I = {(mv)v e X K} ‘V’v: X, € OIX(U}'

vEM i

It is endowed with the topology for which the subgroups

{(xv)ve X K[ |VU€SZI‘UGO}X(U} §5XKUX x X Ok,
veEMg vES VEMp NS

for all finite subsets S C Mk with S, C .S are open and carry the product topology.

Definition 13.2.1: We call C := Ix/K* the group of idele classes.

Proposition 13.2.2: There is a natural isomorphisn{[K/KXI}%" = Cl(Ok). ( . )
T VAR
Big Theorem 13.3.2: For any finite abelian extension L/K there is a natural isomorphism

\ Cr/Nmyx Cr, = Gal(L/K). \

Theorem 13.3.3: The map L — Ny := Nmy x Cy, is a bijection from the set of finite abelian extensions

of K up to isomorphism to the set of closed subgroups of finite index of Ck.
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13.4 Class fields A

Definition 13.4.1: For any non-zero ideal m C Ok we consider the open subgroup
e

4T a6
I = X (KS)° x X {z, € OF, | 2, =1 mod mOg,} < Ig. :&«/z
—_— VESco V€S0 — w it b
The finite abelian extension Hy,/K with ##&= I /K> I is called the big ray class field of modulus m
of K. - K e
! (},l-*«. = kKT, / ¥

Theorem 13.4.2: Up to isomorphism H, /K is the unique maximal abelian extension L/K whose rami-

fication at all finite places v satisfies

{z, € OF |z, =1mod mOk,} C Nmy, sk, OF .

Definition 13.4.3: The extension H := H(y) is called the big Hilbert class field of K.

Theorem 13.4.4: Up to isomorphism H/K is the unique maximal abelian extension of K that is every-

where unramified.
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Variant 13.4.5: Replacing the archimedean factors (K¢)° by K in 13.4.1 one obtains the small ray class

field H}, of modulus m of K. This is the maximal abelian extension with the same ramification conditions

at all finite primes and with the additional condition that all infinite primes are totally split.

Definition 13.4.6: The extension H' := H/

(1) 18 called the small Hilbert class field of K.

Theorem 13.4.7: (a) Up to isomorphism H'/K is the unique maximal abelian extension of K that is

everywhere unramified with all infinite primes totally split.

—

(b) There is a natural isomorphism Gal(H'/K) = Cl(Ok).

VLl fan. Fu(b ) — hc(ob)

(nlf-——a O "o
— c,Q(o.,)——vca(bL/

Theorem 13.4.8: For every fractional ideal a of Ok the ideal aOp: is principal.




To rescue the properties of principal ideal domains for number fields one may try to pass to the Hilbert
class field; but that may itself have a non-trivial class group. Even repeating the procedure does not solve

the problem:

Theorem 13.4.9: (Golod-Shafarevich 1963) There exists a number field which does not possess a finite

extension of class number 1.
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13.5 Reciprocity laws

The global reciprocity isomorphism can be viewed as a far reaching generalization of the quadratic reci-

. Q-1
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