Exam questions

Lecturer: Johannes Schmitt

Exercise 1. For K an algebraically closed field of characteristic not equal to 2, 3 and $a, b \in K$ consider the plane cubic curve

$$C = \{(x, y) \in \mathbb{A}^2 : y^2 = x^3 + ax + b\} \subseteq \mathbb{A}^2.$$

Prove a criterion in terms of a, b when the curve C is smooth.

Exercise 2. Consider the rational map

$$f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2, (X:Y:Z) \mapsto (1/X:1/Y:1/Z).$$

Find the largest open subset $U \subset \mathbb{P}^2$ such that some representative of the rational map f is defined on U (i.e. the largest U to which f can be extended). Show that f is birational and describe its inverse.

Exercise 3. Let $X = V(x_0^3 + x_1^3 + x_2^3 + x_3^3) \subseteq \mathbb{P}^3_{\mathbb{C}}$. Write down a non-constant morphism $f: \mathbb{P}^1_{\mathbb{C}} \to X$. How many such morphisms are there?

Exercise 4. Show that for any ring R there exists a unique morphism

$$X = \operatorname{Spec}(R) \to \operatorname{Spec}(\mathbb{Z}).$$

For \mathbb{F}_2 the finite field with two elements, let $X = \operatorname{Spec}(\mathbb{F}_2)$ and $Y = V(x^2 + 1) \subseteq \mathbb{A}^1_{\mathbb{Z}}$. How many points does (the underlying topological space of) the fiber product $X \times_{\operatorname{Spec}(\mathbb{Z})} Y$ have?

Exercise 5. Let K be an algebraically closed field. For the following combinations of properties of schemes or morphisms, can you either give an example (with proof) or show that they cannot exist?

- a) an affine variety of dimension 1 over K which is complete
- b) a morphism $f: \mathbb{P}^1 \to \mathbb{P}^2$ passing through the points (1:0:0), (0:1:0), (0:0:1)
- c) a scheme X which is not reduced, but which contains a non-empty open subscheme $U\subseteq X$ which is reduced

Exercise 6. Let K be an algebraically closed field. For the following combinations of properties of schemes or morphisms, can you either give an example (with proof) or show that they cannot exist?

Lecturer: Johannes Schmitt

- a) a reduced and separated scheme X over K which is not a variety over K
- b) a surjective map $f: X \to Y$ of projective varieties with dim X=2 and dim Y=1
- c) a birational map $f: X \to Y$ between irreducible projective varieties X, Y over K which is not surjective

Exercise 7. Consider the map $f: \mathbb{A}^1 \to \mathbb{A}^3, t \mapsto (t, t^2, t^3)$ of affine varieties over an algebraically closed field K.

- a) Show that f is a closed morphism and an isomorphism onto its image $Y = f(\mathbb{A}^1) \subseteq \mathbb{A}^3$.
- b) For $U = \mathbb{A}^3 \setminus Y$, what is $\mathcal{O}_U(U)$?

Exercise 8. Let $f: X \to Y$ be a closed morphism of irreducible varieties over an algebraically closed field. Show that if f is surjective, then $\dim X \ge \dim Y$.

Exercise 9. For the Grassmannian G(k,n), show that the incidence correspondence

$$I = \{(L, a) \in G(k, n) \times \mathbb{A}^n : a \in L\}$$

is a closed subvariety of $G(k,n) \times \mathbb{A}^n$ and compute its dimension.

Exercise 10.

- a) Write down (with proof) a locally free sheaf \mathcal{F} of rank 2 on \mathbb{P}^n whose space $\mathcal{F}(\mathbb{P}^n)$ of global sections contains only the zero section.
- b) Is there a locally free sheaf \mathcal{G} of rank 2 on \mathbb{A}^2 whose only global section is the zero section?