Presence Sheet 1

Exercise 1. The space $\operatorname{Mat}(m \times n)=\operatorname{Mat}(m \times n, K)$ of $m \times n$ matrices over the algebraically closed field K can be identified with the affine space $\mathbb{A}^{m \cdot n}=\mathbb{A}_{K}^{m \cdot n}$. Write $I_{n} \in \operatorname{Mat}(n \times n)$ for the identity matrix.

For the following subsets of various matrix spaces, decide whether they are Zariski open, closed, or neither.
a) $\mathrm{GL}(n)=\{A: A$ invertible $\} \subset \operatorname{Mat}(n \times n)$ general linear group
b) $\operatorname{SL}(n)=\{A: \operatorname{det} A=1\} \subset \operatorname{Mat}(n \times n)$ special linear group
c) $\operatorname{Mat}^{\leq k}(m \times n)=\{A: \operatorname{rank} A \leq k\} \subset \operatorname{Mat}(m \times n)$ matrices of rank at most k
d) $\operatorname{Mat}^{\geq k}(m \times n)=\{A: \operatorname{rank} A \geq k\} \subset \operatorname{Mat}(m \times n)$ matrices of rank at least k
e) $U(n, \mathbb{C})=\left\{A: A \cdot A^{*}=I_{n}\right\} \subset \operatorname{Mat}(n \times n, \mathbb{C})$ unitary matrices over $K=\mathbb{C}$
f) $\operatorname{Diag}(n)=\{A: A$ diagonal $\} \subset \operatorname{Mat}(n \times n)$ diagonal matrices
g) $\operatorname{Nil}(n)=\left\{A: A^{m}=0\right.$ for some $\left.m\right\} \subset \operatorname{Mat}(n \times n)$ nilpotent matrices
h) $\operatorname{Comm}(n)=\{(A, B): A \cdot B=B \cdot A\} \subset \operatorname{Mat}(n \times n)^{2}$ pairs of commuting matrices

Exercise 2. Consider the set

$$
\operatorname{Id}(2, \mathbb{C})=\left\{A \in \operatorname{Mat}(2 \times 2, \mathbb{C}): A^{2}=I_{2}\right\}
$$

of idempotent matrices. Show that it can be written as the disjoint union of 3 non-empty affine varieties. (Bonus: If you have seen the definition of irreducible decomposition: compute it for $\operatorname{Id}(2, \mathbb{C})$.)
Hint: You can find the components by solving equations, or by using results from Linear Algebra concerning eigenvalues, etc ...

