Presence Sheet 11

Exercise 1. (Tangent spaces) For two schemes X and Y over a base scheme S define the set of Y-points of X to be $Mor_S(Y, X)$ and denote it by X(Y). For a point x of a locally ringed space X the cotangent space of X at x is the K(x)-vector space

$$T_{X,x}^* := m(x)/m(x)^2$$
,

where $m(x) \subseteq \mathcal{O}_{X,x}$ is the maximal ideal. The tangent space of X at x is the K(x)-dual of $T^*_{X,x}$ and is denoted by $T_{X,x}$.

Suppose X is a variety over an algebraically closed field K. Consider schemes over Spec K.

- a) Show that $X(\operatorname{Spec} K)$ is naturally identified with the set of closed points of X. Is this true if K is not necessarily algebraically closed?
- b) Show that any element of $X(\operatorname{Spec} K[t]/t^2)$ is naturally identified with a choice of a closed point $x \in X$ and a choice of an element $v \in T_{X,x}$.
- c) The homomorphisms $K \hookrightarrow K[t]/t^2 \twoheadrightarrow K$ (where $t \mapsto 0$ in the second homomorphism) correspond to morphisms of schemes $\operatorname{Spec} K \to \operatorname{Spec} K[t]/t^2 \to \operatorname{Spec} K$. Describe the induced maps of sets $X(\operatorname{Spec} K) \to X(\operatorname{Spec} K[t]/t^2) \to X(\operatorname{Spec} K)$ in terms of the data above.
- d) Let $f: X \to Y$ be a morphism of varieties over K and $x \in X$ be a closed point. Construct a natural linear morphism $df_x: T_{X,x} \to T_{Y,f(x)}$. You can use the definition of tangent space or the description from b).

Let Z be the fibre of f above f(x). Show that $\operatorname{Ker}(df_x) \simeq T_{Z,x}$.

- e) Consider $X = \mathbb{A}_K^n = \operatorname{Spec} K[x_1, \dots, x_n]$ and $o = (0, \dots, 0) \in X$. Show that the cotangent space $T_{X,o}^*$ is identified with the standard *n*-dimensional space K^n via $m(o) \ni x_i \mapsto e_i$. By taking the dual basis we get a similar identification of $T_{X,o}$ with K^n . Now let $a = (a_1, \dots, a_n)$ be an arbitrary closed point of A_K^n . By the translation morphism $p \mapsto p + a$ of \mathbb{A}_K^n identify $T_{X,a}$ with $T_{X,o} \simeq K^n$ using d).
- f) Let $X := \mathbb{A}_{K}^{n+1} \setminus \{(0, 0, \dots, 0)\} \to \mathbb{P}_{K}^{n}$ be the natural morphism. Recall that geometrically it maps a closed point $a = (a_{0}, \dots, a_{n})$ to the line ℓ_{a} through o and a. Using e) identify any tangent space at any closed point of $X \subset \mathbb{A}_{K}^{n+1}$ with the standard K^{n+1} . Show that $T_{X,a} \to T_{\mathbb{P}_{K}^{n},\ell_{a}}$ is surjective and describe $T_{\mathbb{P}_{K}^{n},\ell_{p}}$ as a quotient of K^{n+1} .