Presence Sheet 4

Exercise 1. A linear algebraic group is a tuple (G, m, i, e) of an affine variety G, morphisms

$$m:G\times G\to G$$
 and $i:G\to G$

and a point $e \in G$ such that

$$m(m(g_1, g_2), g_3) = m(g_1, m(g_2, g_3))$$
$$m(e, g) = m(g, e) = g$$
$$m(g, i(g)) = m(i(g), g) = e$$

for all $g, g_1, g_2, g_3 \in G$. We think of $m(g, h) = g \circ h$ as the group operation, $e \in G$ as the neutral element of the group and $i(g) = g^{-1}$ as the inverse element in the group.

Show that the following are examples of linear algebraic groups (provide the full data (G, m, i, e) above, show that m, i are morphisms and check as many of the properties as you find interesting):

- a) $\mathbb{G}_a = \mathbb{A}^1$ with addition +
- b) $\mathbb{G}_m = \mathbb{A}^1 \setminus \{0\}$ with multiplication \cdot
- c) $\mu_2 = \{1, -1\}$ with multiplication \cdot
- d) $\operatorname{GL}_n = \{A \in \operatorname{Mat}(n \times n, K) : A \text{ invertible}\}\$ with matrix multiplication *Hint:* If you are stuck, you can look up the "adjugate matrix" on wikipedia.

Exercise 2. In this exercise, we want to show the following nice topological property of linear algebraic groups:

Proposition Any connected linear algebraic group G is irreducible.

- a) Let X, Y be affine varieties and $y_0 \in Y$. Show that the constant map $X \to Y, x \mapsto y_0$ is a morphism. Bonus challenge: Show the same thing for X, Y prevarieties!
- b) Show that for $h \in G$ the *left-translation*

$$t_h: G \to G, g \mapsto m(h, g)$$

is an isomorphism.

c) Show that for any two points $p, q \in G$ there is an isomorphism $\varphi : G \to G$ with $\varphi(p) = q$.

- d) Let X be a connected topological space with irreducible decomposition $X = X_1 \cup \ldots \cup X_n$ with $n \ge 2$. Show that there exist
 - a point $p \in X$ lying on a unique (i.e. exactly one) irreducible component X_i ,
 - a point $q \in X$ lying on at least two irreducible components
- e) Prove the proposition above.