Presence Sheet 4

Exercise 1. A linear algebraic group is a tuple (G, m, i, e) of an affine variety G, morphisms

$$
m: G \times G \rightarrow G \text { and } i: G \rightarrow G
$$

and a point $e \in G$ such that

$$
\begin{aligned}
m\left(m\left(g_{1}, g_{2}\right), g_{3}\right) & =m\left(g_{1}, m\left(g_{2}, g_{3}\right)\right) \\
m(e, g) & =m(g, e)=g \\
m(g, i(g)) & =m(i(g), g)=e
\end{aligned}
$$

for all $g, g_{1}, g_{2}, g_{3} \in G$. We think of $m(g, h)=g \circ h$ as the group operation, $e \in G$ as the neutral element of the group and $i(g)=g^{-1}$ as the inverse element in the group.

Show that the following are examples of linear algebraic groups (provide the full data (G, m, i, e) above, show that m, i are morphisms and check as many of the properties as you find interesting):
a) $\mathbb{G}_{a}=\mathbb{A}^{1}$ with addition +
b) $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}$ with multiplication .
c) $\mu_{2}=\{1,-1\}$ with multiplication.
d) $\mathrm{GL}_{n}=\{A \in \operatorname{Mat}(n \times n, K): A$ invertible $\}$ with matrix multiplication

Hint: If you are stuck, you can look up the "adjugate matrix" on wikipedia.

Exercise 2. In this exercise, we want to show the following nice topological property of linear algebraic groups:

Proposition Any connected linear algebraic group G is irreducible.
a) Let X, Y be affine varieties and $y_{0} \in Y$. Show that the constant map $X \rightarrow Y, x \mapsto y_{0}$ is a morphism.
Bonus challenge: Show the same thing for X, Y prevarieties!
b) Show that for $h \in G$ the left-translation

$$
t_{h}: G \rightarrow G, g \mapsto m(h, g)
$$

is an isomorphism.
c) Show that for any two points $p, q \in G$ there is an isomorphism $\varphi: G \rightarrow G$ with $\varphi(p)=q$.
d) Let X be a connected topological space with irreducible decomposition $X=X_{1} \cup$ $\ldots \cup X_{n}$ with $n \geq 2$. Show that there exist

- a point $p \in X$ lying on a unique (i.e. exactly one) irreducible component X_{i},
- a point $q \in X$ lying on at least two irreducible components
e) Prove the proposition above.

