Presence Sheet 5

Exercise 1. Let $0 \neq f \in K\left[x_{0}, x_{1}\right]$ be a nonzero homogeneous polynomial of degree $d \geq 0$.
a) Let $g\left(x_{1}\right)=f\left(1, x_{1}\right)$ be the dehomogenization of f. Show that

$$
f\left(x_{0}, x_{1}\right)=x_{0}^{d} \cdot g\left(x_{1} / x_{0}\right)
$$

b) Show that f has a decomposition

$$
f=\left(b_{1} x_{0}-a_{1} x_{1}\right) \cdot\left(b_{2} x_{0}-a_{2} x_{1}\right) \cdots\left(b_{d} x_{0}-a_{d} x_{1}\right)
$$

into linear factors.
c) Show that the vanishing set of f is given by

$$
V(f)=\left\{\left(a_{1}: b_{1}\right), \ldots,\left(a_{d}: b_{d}\right)\right\} \subseteq \mathbb{P}^{1} .
$$

We say that the $\left(a_{i}: b_{i}\right)$, counted with multiplicity, are the zeros of f on \mathbb{P}^{1}.
Note: These multiplicities sum to the degree d of the polynomial.
Exercise 2. A homogeneous polynomial $f \in K\left[x_{0}, x_{1}\right]$ of degree $d \geq 0$ is given by

$$
f=f_{c}=c_{0} x_{0}^{d}+c_{1} x_{0}^{d-1} x_{1}+\ldots+c_{d-1} x_{0} x_{1}^{d-1}+c_{d} x_{1}^{d}
$$

In the following we identify the space Poly $_{d}$ of such nonzero polynomials up to scaling with \mathbb{P}^{d} by sending the class $\left[f_{c}\right]$ of the polynomial f_{c} to the vector $c=\left(c_{0}: c_{1}: \ldots: c_{d}\right) \in \mathbb{P}^{d}$.

For the following sets, decide if they are open, closed or not-well-defined in Poly ${ }_{d}=\mathbb{P}^{d}$, and in the first two cases compute their dimension (assume $d \geq 1$ for simplicity).
a) $A=\left\{[f] \in\right.$ Poly $_{d}: f\left(p_{0}\right)=0$ for $\left.p_{0}=(1: 0) \in \mathbb{P}^{1}\right\}$
b) $B=\left\{[f] \in\right.$ Poly $_{d}: f\left(p_{0}\right)=f\left(p_{1}\right)$ for $\left.p_{0}=(1: 0), p_{1}=(0: 1) \in \mathbb{P}^{1}\right\}$
c) $C=\left\{[f] \in\right.$ Poly $_{d}$: all zeros of f have multiplicity 1$\}$

Bonus exercise (optional; guess an answer - proof needs tools we'll not discuss):
d) $D=\left\{[f] \in \operatorname{Poly}_{d}: f\right.$ has a zero of order at least 3$\}$

Exercise 3. An effective divisor of degree d on \mathbb{P}^{1} is a formal linear combination $D=$ $m_{1} p_{1}+\ldots+m_{k} p_{k}$ of finitely many points $p_{i} \in \mathbb{P}^{1}$ with $m_{i} \in \mathbb{N}$ such that $m_{1}+\ldots+m_{k}=d$. E.g. examples of effective divisors of degree 3 are:

$$
\begin{equation*}
D_{1}=(0: 1)+(1: 1)+(1: 0) \text { and } D_{2}=2 \cdot(1: 2)+(1: 3) . \tag{1}
\end{equation*}
$$

Let Eff_{d} be the set of such effective divisors.
a) Show that the map

$$
\begin{equation*}
\Psi: \mathrm{Eff}_{d} \rightarrow \operatorname{Poly}_{d} \cong \mathbb{P}^{d}, D=\sum_{i=1}^{k} m_{i}\left(a_{i}: b_{i}\right) \mapsto\left[\prod_{i=1}^{k}\left(b_{i} x_{0}-a_{i} x_{1}\right)^{m_{i}}\right] \tag{2}
\end{equation*}
$$

is well-defined and bijective. Thus we can interpret \mathbb{P}^{d} as the set of effective divisors of degree d on \mathbb{P}^{1}.
b) What are the images of D_{1}, D_{2} from (1) under Ψ ?

