Presence Sheet 6

Exercise 1. Consider the (irreducible) affine curve

$$
X^{0}=V\left(x_{2}^{2}-x_{1}^{3}+x_{1}-1\right) \subseteq \mathbb{A}_{\mathbb{C}}^{2}
$$

a) What are the points in the projective closure $X=\bar{X}^{0} \subseteq \mathbb{P}_{\mathbb{C}}^{2}$?

Note: The curve X is an example of an elliptic curve.
b) Given $a, b \in X$ with $a \neq b$, there is a unique line $L_{a b} \subseteq \mathbb{P}_{\mathbb{C}}^{2}$ through a, b, which intersects X in a third point $f(a, b)$, counted with multiplicity.

Compute $f(a, b)$ for
i) $a=(1:-1: 1)$ and $b=(1: 0: 1)$
ii) $a=(1: 0: 1)$ and $b=(0: 0: 1)$
c) Show that $U=\{(a, b) \in X \times X: a \neq b\}$ is an open subset of $X \times X$.

Hint: Using results from the lecture, there is a one-sentence argument for this!
d) Optional: Show that the map $U \rightarrow X,(a, b) \mapsto f(a, b)$ is a morphism.

Fact: The morphism $f: U \rightarrow X$ extends uniquely to a morphism $f: X \times X \rightarrow X$. Then we can define a group structure (X, \oplus, e) on X which is uniquely determined by the property that $e=(0: 0: 1)$ is the neutral element and

$$
\begin{equation*}
a \oplus b \oplus f(a, b)=e \tag{1}
\end{equation*}
$$

for all $a, b \in X$. For the following exercise parts, you can assume this fact without proof.
e) Use (1) to express $a \oplus b$ using the function f and show that the map $X \times X \rightarrow$ $X,(a, b) \mapsto a \oplus b$ is a morphism.
$f)$ Show that $f(a, b)=f(b, a)$ and conclude that the group (X, \oplus, e) is abelian.
This is an example of the group law on an elliptic curve. The analogous construction over finite fields is used in elliptic-curve cryptography.

