Presence Sheet 1

Exercise 1. The space $\operatorname{Mat}(m \times n)=\operatorname{Mat}(m \times n, K)$ of $m \times n$ matrices over the algebraically closed field K can be identified with the affine space $\mathbb{A}^{m \cdot n}=\mathbb{A}_{K}^{m \cdot n}$. Write $I_{n} \in \operatorname{Mat}(n \times n)$ for the identity matrix.

For the following subsets of various matrix spaces, decide whether they are Zariski open, closed, or neither.
a) $\mathrm{GL}(n)=\{A: A$ invertible $\} \subset \operatorname{Mat}(n \times n)$ general linear group
b) $\operatorname{SL}(n)=\{A: \operatorname{det} A=1\} \subset \operatorname{Mat}(n \times n)$ special linear group
c) $\operatorname{Mat}^{\leq k}(m \times n)=\{A: \operatorname{rank} A \leq k\} \subset \operatorname{Mat}(m \times n)$ matrices of rank at most k
d) $\operatorname{Mat}^{\geq k}(m \times n)=\{A: \operatorname{rank} A \geq k\} \subset \operatorname{Mat}(m \times n)$ matrices of rank at least k
e) $U(n, \mathbb{C})=\left\{A: A \cdot A^{*}=I_{n}\right\} \subset \operatorname{Mat}(n \times n, \mathbb{C})$ unitary matrices over $K=\mathbb{C}$
f) $\operatorname{Diag}(n)=\{A: A$ diagonal $\} \subset \operatorname{Mat}(n \times n)$ diagonal matrices
g) $\operatorname{Nil}(n)=\left\{A: A^{m}=0\right.$ for some $\left.m\right\} \subset \operatorname{Mat}(n \times n)$ nilpotent matrices
h) $\operatorname{Comm}(n)=\{(A, B): A \cdot B=B \cdot A\} \subset \operatorname{Mat}(n \times n)^{2}$ pairs of commuting matrices

Solution. The determinant det is a polynomial function in the entries of the matrix. Hence $\operatorname{GL}(n)=\operatorname{Mat}(n \times n) \backslash V(\operatorname{det})$ is Zariski open, and $\mathrm{SL}(n)=V(\operatorname{det}-1)$ is Zariski closed. Being of rank at most k is equivalent to the vanishing of all $(k+1) \times(k+1)$-minors of the matrix, which are again determinants of submatrices and hence polynomial. Thus Mat ${ }^{\geq k}(m \times n)$ is Zariski closed, and Mat ${ }^{\geq k}(m \times n)=\operatorname{Mat}(m \times n) \backslash \operatorname{Mat}^{\leq k-1}(m \times n)$ is Zariski open.

For $n=1$ we have $U(1, \mathbb{C})=S^{1} \subset \mathbb{A}^{1}$ is the unit circle, which is infinite but not equal to \mathbb{A}^{1} and thus not Zariski closed. Similarly its complement is not closed, so $U(1, \mathbb{C})$ is also not Zariski open.

The diagonal matrices are cut out by the vanishing of all non-diagonal entries of $A=\left(a_{i, j}\right)_{i, j}$:

$$
\operatorname{Diag}(n)=V\left(a_{i, j}: i \neq j\right)
$$

Thus $\operatorname{Diag}(n)$ is Zariski closed.
From Linear Algebra, we know (using the Jordan decomposition) that an $n \times n$ matrix A is nilpotent if and only if $A^{n}=0$. The entries of the matrix A^{n} are polynomials in the entries of A, and thus this is a Zariski closed condition (cut out by the vanishing of those polynomials).

Similarly, the entries of $A \cdot B-B \cdot A$ are polynomials in the entries of A, B, and thus $\operatorname{Comm}(n)$ is Zariski closed.

Exercise 2. Consider the set

$$
\operatorname{Id}(2, \mathbb{C})=\left\{A \in \operatorname{Mat}(2 \times 2, \mathbb{C}): A^{2}=I_{2}\right\}
$$

of idempotent matrices. Show that it can be written as the disjoint union of 3 non-empty affine varieties. (Bonus: If you have seen the definition of irreducible decomposition: compute it for $\operatorname{Id}(2, \mathbb{C})$.)
Hint: You can find the components by solving equations, or by using results from Linear Algebra concerning eigenvalues, etc ...

Solution. We have

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow A^{2}=\left(\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & b c+d^{2}
\end{array}\right) \stackrel{!}{=}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

If $a+d \neq 0$ this forces $b=c=0$ and thus $a^{2}=d^{2}=1$. This gives the solutions $a=d=1$ and $a=d=-1$ (since $a=1, d=-1$ and $a=-1, d=1$ are excluded by $a+d \neq 0$).

If $a+d=0$ the remaining equation is $a^{2}+b c=1$. Thus we have

$$
\operatorname{Id}(2, \mathbb{C})=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} \sqcup\left\{\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} \sqcup V\left(a+d, a^{2}+b c-1\right)
$$

All three sets are affine varieties, and they are also disjoint.
Bonus: The two one-point sets are clearly irreducible. For $X=V\left(a+d, a^{2}+b c-1\right)$ we compute

$$
K[a, b, c, d] /\left\langle a+d, a^{2}+b c-1\right\rangle \cong K[a, b, c] /\left\langle a^{2}+b c-1\right\rangle .
$$

We claim that the polynomial $f=a^{2}+b c-1$ is irreducible in the UFD $K[a, b, c]$. Indeed, we can see it as a polynomial of degree 1 in c. If we had a decomposition $f=h \cdot g$ then without loss of generality h, g have degrees 1,0 in c and we have

$$
b c+a^{2}-1=\left(h_{1}(a, b) c+h_{2}(a, b)\right) \cdot g(a, b) .
$$

This forces $b=h_{1}(a, b) \cdot g(a, b)$, which up to units implies $h_{1}=b, g=1$ or $h_{1}=1, g=b$. In the first case we are done, in the second we get a contradiction since f is not divisible by b.

Alternatively, it is easy to see that the polynomial $b c-1$ is irreducible in $K[b, c]$, hence the polynomial $a^{2}+b c-1$ is irreducible in $K[a, b, c]$ by Eisenstein'c criterion.

Since the irreducible element f is prime, we have that $K[a, b, c, d] /\left\langle a+d, a^{2}+b c-1\right\rangle$ is a domain and hence $\left\langle a+d, a^{2}+b c-1\right\rangle$ is prime. By a result from the lecture, this shows that X is irreducible, so the decomposition of $\operatorname{Id}(2, \mathbb{C})$ above is the irreducible decomposition.

