## Presence Sheet 12

Exercise 1. (Subschemes) Are the following morphisms examples of open subschemes, closed subschemes or neither?
a) $f: X=\operatorname{Spec} K[x, y] /(x y-1) \rightarrow \operatorname{Spec} K[x]=Y$ unique map with

$$
f^{*}: K[x] \rightarrow K[x, y] /(x y-1), x \mapsto x
$$

b) $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2},\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}: x_{1}: 0\right)$
c) $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}, t \mapsto\left(t^{2}, t^{3}\right)$

## Solution.

a) We have $K[x, y] /(x y-1) \cong K[x]_{x}$ with $y \mapsto 1 / x$. Thus $X=D(x) \subseteq Y$ is a distinguished affine open subset, making the morphism $f$ an open embedding (or subscheme).
b) The target scheme $\mathbb{P}^{2}$ has a cover $\mathbb{P}^{2}=U_{0} \cup U_{1} \cup U_{2}$ by three copies of $\mathbb{A}^{2}$. Restricting $f$ to the preimage of $U_{0}, U_{1}$ we obtain morphisms of the form
$f_{i}: \operatorname{Spec} K[x]=\mathbb{A}^{1} \rightarrow \mathbb{A}^{2}=\operatorname{Spec} K[x, y]$ from $f_{i}^{*}: K[x, y] \rightarrow K[x], x \mapsto x, y \mapsto 0$.
Since $f_{i}^{*}$ are surjective, we see that $\left.f\right|_{f^{-1}\left(U_{i}\right)}$ is a closed subscheme of $U_{i}$ for $i=0,1$. For $i=2$ we have $f^{-1}\left(U_{2}\right)=\emptyset$, which is also a closed subscheme of $U_{2}$, corresponding to the surjective map $K[x, y] \rightarrow\{0\}$ as $\emptyset=\operatorname{Spec}\{0\}$ is the spectrum of the zero-ring.
c) The map $f$ is not an open embedding since its image $V\left(x^{3}-y^{2}\right)$ is not open in $\mathbb{A}^{2}$. Otherwise $\mathbb{A}^{2}=V\left(x^{3}-y^{2}\right) \cup\left(\mathbb{A}^{2} \backslash V\left(x^{3}-y^{2}\right)\right)$ would be a decomposition into two closed and disjoint sets (since $V\left(x^{3}-y^{2}\right)$ is certainly also closed), making $\mathbb{A}^{2}$ disconnected, which we know is not the case.
However, $f$ is also not a closed subscheme, since the induced map of rings

$$
K[x, y] \rightarrow K[t], x \mapsto t^{2}, y \mapsto t^{3}
$$

is not surjective (as $t$ is not in the image).

## Exercise 2. (Fiber products)

a) Let $X, S$ be schemes, then the set of $S$-points of $X$ is given by

$$
X(S)=\{S \xrightarrow{f} X: f \text { morphism }\} .
$$

For $g: X \rightarrow Y$ a morphism of schemes, there is a natural map

$$
X(S) \rightarrow Y(S), f \mapsto g \circ f
$$

of their $S$-points.
Show that for $f_{X}: X \rightarrow Z$ and $f_{Y}: Y \rightarrow Z$ two morphisms of schemes, we have

$$
\left(X \times_{Z} Y\right)(S)=\left\{(x, y) \in X(S) \times Y(S): f_{X} \circ x=f_{Y} \circ y \in Z(S)\right\}
$$

Note: This makes precise the idea that points of $X \times_{Z} Y$ are pairs of points of $X, Y$ mapping to the same point in $Z$.
b) Calculate the following fiber products $X \times_{Z} Y$ :
i) $X=\mathbb{A}^{1} \xrightarrow{x \mapsto(x, 0)} \mathbb{A}^{2}=Z$ and $X=\mathbb{A}^{1} \xrightarrow{y \mapsto(0, y)} \mathbb{A}^{2}=Z$
ii) $X=\mathbb{A}^{1} \xrightarrow{t \mapsto(t, t)} \mathbb{A}^{2}=Z$ and $X=\mathbb{A}^{3} \xrightarrow{(x, y, z) \mapsto(x, y)} \mathbb{A}^{2}=Z$

Hint: Remember that for $\varphi: S \rightarrow R$ a ring homomorphism and $I \subseteq S$ an ideal we have $R \otimes_{S}(S / I) \cong R /\langle\varphi(I)\rangle$.
c) Show that for a fiber product

such that $f_{X}$ is a closed subscheme, also $\pi_{Y}$ is a closed subscheme.
d) Is it true that for $X, Y, Z$ varieties also $X \times_{Z} Y$ is a variety?

## Solution.

a) This is just the universal property of the fiber product: a morphism $S \rightarrow X \times{ }_{Z} Y$ is the same thing as a pair of morphisms $S \rightarrow X$ and $S \rightarrow Y$ giving the same map to $Z$ when composed with $f_{X}, f_{Y}$.
b) All schemes are affine, so their fiber product is the spectrum of the tensor product of the associated rings.
i) We have

$$
K[x] \otimes_{K[x, y]} K[y]=K[x] \otimes_{K[x, y]} K[x, y] /\langle x\rangle \cong K[x] /\langle x\rangle \cong K .
$$

Thus $X \times{ }_{Z} Y=$ Spec $K$ mapping to $X, Y$ as the inclusion of the origin.
ii) We have $K[t] \cong K[x, y] /\langle x-y\rangle$ via $x \mapsto t, y \mapsto t$ and using this, we see

$$
K[t] \otimes_{K[x, y]} K[x, y, z] \cong K[x, y] /\langle x-y\rangle \otimes_{K[x, y]} K[x, y, z] \cong K[x, y, z] /\langle x-y\rangle \cong K[x, z] .
$$

Thus $X \times{ }_{Z} Y \cong \mathbb{A}^{2}$ mapping to $X, Y$ via

$$
\mathbb{A}^{2} \xrightarrow{(x, z) \mapsto x} X=\mathbb{A}^{1} \text { and } \mathbb{A}^{2} \xrightarrow{(x, z) \mapsto(x, x, z)} Y=\mathbb{A}^{3} .
$$

c) We prove that $\pi_{Y}$ is a closed subscheme by covering it with affine schemes and calculating the restriction of $\pi_{Y}$ over these. To obtain this cover, we first cover $Z$ with affine open schemes $U_{i}=\operatorname{Spec}\left(R_{i}\right)$. Since $f_{X}$ is a closed subscheme, the restriction of $f_{X}$ over $U_{i}$ is given by

$$
\operatorname{Spec} R_{i} / I_{i} \rightarrow \operatorname{Spec} R_{i}=U_{i}
$$

for some ideal $I_{i} \subseteq R_{i}$. Now take the open subscheme $f_{Y}^{-1}\left(U_{i}\right) \subseteq Y$ and cover it by affine subschemes $V_{i j}=\operatorname{Spec} S_{i j}$ mapping to $U_{i}=\operatorname{Spec}\left(R_{i}\right)$ with associated ring homomorphism $f_{i j}: R_{i} \rightarrow S_{i j}$. Then we have seen that $\pi_{Y}^{-1}\left(V_{i j}\right)$ is given by

$$
\operatorname{Spec}\left(R_{i} / I_{i}\right) \otimes_{R_{i}} S_{i j} \cong \operatorname{Spec} S_{i j} /\left\langle f_{i j}\left(I_{i}\right)\right\rangle .
$$

Since the associated map $S_{i j} \rightarrow S_{i j} /\left\langle f_{i j}\left(I_{i}\right)\right\rangle$ is surjective, we have that $\pi_{Y}$ is a closed subscheme as desired.
d) No: take $X=V(y) \subseteq \mathbb{A}^{2}=Z$ and $Y=V\left(y-x^{2}\right) \subseteq \mathbb{A}^{2}=Z$. All three schemes come from affine varieties, but their fiber product (which is just the scheme-theoretic intersection) is

$$
V\left(y, y-x^{2}\right)=V\left(y, x^{2}\right) \cong \operatorname{Spec} K[x, y] /\left\langle y, x^{2}\right\rangle \cong K[x] /\left\langle x^{2}\right\rangle .
$$

This is not reduced and thus not a variety.

