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Exercise 1. Show that a map F': A" — A™ of the form F(z) = (fi(x),..., fm(z)) with
fi,-oy fm € K[x1,...,2,] is continuous (with respect to the Zariski topology).

Note: Such polynomial maps will be examples of morphisms of affine varieties later, but
for the purpose of the exercises below we just need their continuity.

Solution. For a closed set Y =V (g1(y),...,9-(y)) € A™ we have
FY) = V(gi(fi(x), .., fn(@)) ii=1,...,7) C A"

is a again a vanishing locus of polynomials, hence closed.

Exercise 2.  Given d € N, we can identify the set P; C KJz]| of monic degree d
polynomials in with A¢ by the map

A = Py(ag, ... an1) = 2% Fag 2 L Far +oag.

a) Show that the set Ay C P, of degree 2 polynomials with a double zero is a Zariski
closed subset.

b) Show that the set Ay C P, of degree d polynomials with a double zero is a hyper-
surface.
Hint: If you are stuck, you can try to google the word ”discriminant”.

¢) Write down a polynomial map F : A%! — P; whose image is A4, and conclude
that Ay is irreducible.

Solution.

a) A polynomial f = 2 + a;x + ag has a double zero iff the discriminant a? — 4ay
vanishes, which cuts out a closed subset of Ps.

b) Again, f € P, has a double zero iff its discriminant vanishes, which is a (nonzero)
polynomial of degree (g) in the coefficients aq_1,...,a9. Thus its vanishing locus
A, is a hypersurface as claimed.

c¢) The desired polynomial map is
F(ay,...,aq1) = (r —a1)*(x —ay) - (x —aq_1) € Ay C Py.

Expanding the products out shows that the coefficients of F'(aq,...,aq_1) depend
polynomially on ay,...,a4-1. Thus F' is continuous by Exercise 1 and since its
domain A?"! is irreducible, its image Ay = F(A?!) is likewise irreducible (as shown
on Exercise sheet 2).
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Exercise 3. (Cayley-Hamilton theorem)
In this exercise we show the Cayley-Hamilton theorem from linear algebra. It says that
for A € Mat(n x n, K) with characteristic polynomial xa(x) = det(zE, — A) we have
a) Show (or convince yourself) that the maps
X: Mat(n x n, K) = P,, A+ x4
ev : Mat(n x n, K) x P,, — Mat(n x n, K), (A, f) — f(A)
are polynomial maps in the sense of Exercise 1.

b) Show that the set U = {A € Mat(n x n, K) : A has n distinct eigenvalues} is a
non-empty irreducible Zariski open subset of Mat(n x n, K).

c¢) Prove the Cayley-Hamilton theorem for A € U.
Hint: Note that for S € GL(n, K) and A € Mat(n x n, K) we have f(SAS™!) =
Sf(A)S! for any f € Klx].

d) Conclude that the Cayley-Hamilton theorem holds for all A € Mat(n x n, K).

Solution.

a) The formulas for the determinant in x4(x) = det(zE, — A) and the matrix powers
and additions in f(A) show that these expressions depend polynomially on the
entries of A (and coefficients of f).

b) We have U = x~'(P, \ A,) is the preimage of the Zariski open set P, \ A, and
thus open. Moreover, given n distinct elements Ay, ..., A, the diagonal matrix D =
diag(A1, ..., A,) is contained in U, so U is non-empty (here we use that algebraically
closed fields are infinite).

¢) Any matrix A € U is diagonalizable, so there is S € GL(n, K) with SAS™! =
diag(A1,...,Ay) =: D. Then
xa(A) = Sxa(D)S™! = Sdiag(xa(M1), ..., xa(Au))S™ =0

since the eigenvalues \; are zeros of x4 by definition.

d) Consider the composition

F: Mat(n x n, K) 2% Mat(n x n, K) x P, <% Mat(n x n, K)

It is continuous as the composition of polynomial maps, so F~1({0}) C Mat(n x
n, K) is closed. By part c¢) this closed set contains the non-empty open U, and
since Mat(n x n, K) is irreducible. Thus U is dense and so F is constant equal to
0, proving Cayley-Hamilton.

Exercise 4. Compute the dimension of the sets

T ={A e Mat(2 x 2, K) : trace(4) = 0}, Nily = {A € Mat(2 x 2, K) : A nilpotent} .

Solution. For A = (i 2) we have A(T) = Kla,b,c,d]/(a — d) = Kla,b,c| is a domain

of Krull dimension 3, so T is irreducible of dimension 3. The subset Nil, C T is cut out
by the vanishing of the determinant —a? — bc, which is a nonzero element of A(T). Thus
by Krull’s principal ideal theorem, the set Nily is of pure dimension 3 — 1 = 2.
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