Presence Sheet 2

Exercise 1. Show that a map $F: \mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ of the form $F(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ with $f_{1}, \ldots, f_{m} \in K\left[x_{1}, \ldots, x_{n}\right]$ is continuous (with respect to the Zariski topology).
Note: Such polynomial maps will be examples of morphisms of affine varieties later, but for the purpose of the exercises below we just need their continuity.
Solution. For a closed set $Y=V\left(g_{1}(y), \ldots, g_{r}(y)\right) \subseteq \mathbb{A}^{m}$ we have

$$
F^{-1}(Y)=V\left(g_{i}\left(f_{1}(x), \ldots, f_{m}(x)\right): i=1, \ldots, r\right) \subseteq \mathbb{A}^{n}
$$

is a again a vanishing locus of polynomials, hence closed.
Exercise 2. Given $d \in \mathbb{N}$, we can identify the set $P_{d} \subseteq K[x]$ of monic degree d polynomials in with \mathbb{A}^{d} by the map

$$
\mathbb{A}^{d} \xrightarrow{\sim} P_{d},\left(a_{0}, \ldots, a_{n-1}\right) \mapsto x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} .
$$

a) Show that the set $\Delta_{2} \subseteq P_{2}$ of degree 2 polynomials with a double zero is a Zariski closed subset.
b) Show that the set $\Delta_{d} \subseteq P_{d}$ of degree d polynomials with a double zero is a hypersurface.
Hint: If you are stuck, you can try to google the word "discriminant".
c) Write down a polynomial map $F: \mathbb{A}^{d-1} \rightarrow P_{d}$ whose image is Δ_{d}, and conclude that Δ_{d} is irreducible.

Solution.

a) A polynomial $f=x^{2}+a_{1} x+a_{0}$ has a double zero iff the discriminant $a_{1}^{2}-4 a_{0}$ vanishes, which cuts out a closed subset of P_{2}.
b) Again, $f \in P_{d}$ has a double zero iff its discriminant vanishes, which is a (nonzero) polynomial of degree $\binom{d}{2}$ in the coefficients a_{d-1}, \ldots, a_{0}. Thus its vanishing locus Δ_{d} is a hypersurface as claimed.
c) The desired polynomial map is

$$
F\left(a_{1}, \ldots, a_{d-1}\right)=\left(x-a_{1}\right)^{2}\left(x-a_{2}\right) \cdots\left(x-a_{d-1}\right) \in \Delta_{d} \subseteq P_{d}
$$

Expanding the products out shows that the coefficients of $F\left(a_{1}, \ldots, a_{d-1}\right)$ depend polynomially on a_{1}, \ldots, a_{d-1}. Thus F is continuous by Exercise 1 and since its domain \mathbb{A}^{d-1} is irreducible, its image $\Delta_{d}=F\left(\mathbb{A}^{d-1}\right)$ is likewise irreducible (as shown on Exercise sheet 2).

Exercise 3. (Cayley-Hamilton theorem)

In this exercise we show the Cayley-Hamilton theorem from linear algebra. It says that for $A \in \operatorname{Mat}(n \times n, K)$ with characteristic polynomial $\chi_{A}(x)=\operatorname{det}\left(x E_{n}-A\right)$ we have $\chi_{A}(A)=0$.
a) Show (or convince yourself) that the maps

$$
\begin{array}{rlrl}
\chi: & \operatorname{Mat}(n \times n, K) & \rightarrow P_{n}, A \mapsto \chi_{A} \\
\mathrm{ev}: & & \operatorname{Mat}(n \times n, K) \times P_{m} & \rightarrow \operatorname{Mat}(n \times n, K),(A, f) \mapsto f(A)
\end{array}
$$

are polynomial maps in the sense of Exercise 1.
b) Show that the set $U=\{A \in \operatorname{Mat}(n \times n, K): A$ has n distinct eigenvalues $\}$ is a non-empty irreducible Zariski open subset of $\operatorname{Mat}(n \times n, K)$.
c) Prove the Cayley-Hamilton theorem for $A \in U$.

Hint: Note that for $S \in \mathrm{GL}(n, K)$ and $A \in \operatorname{Mat}(n \times n, K)$ we have $f\left(S A S^{-1}\right)=$ $S f(A) S^{-1}$ for any $f \in K[x]$.
d) Conclude that the Cayley-Hamilton theorem holds for all $A \in \operatorname{Mat}(n \times n, K)$.

Solution.

a) The formulas for the determinant in $\chi_{A}(x)=\operatorname{det}\left(x E_{n}-A\right)$ and the matrix powers and additions in $f(A)$ show that these expressions depend polynomially on the entries of A (and coefficients of f).
b) We have $U=\chi^{-1}\left(P_{n} \backslash \Delta_{n}\right)$ is the preimage of the Zariski open set $P_{n} \backslash \Delta_{n}$ and thus open. Moreover, given n distinct elements $\lambda_{1}, \ldots, \lambda_{n}$ the diagonal matrix $D=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is contained in U, so U is non-empty (here we use that algebraically closed fields are infinite).
c) Any matrix $A \in U$ is diagonalizable, so there is $S \in \mathrm{GL}(n, K)$ with $S A S^{-1}=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=: D$. Then

$$
\chi_{A}(A)=S \chi_{A}(D) S^{-1}=S \operatorname{diag}\left(\chi_{A}\left(\lambda_{1}\right), \ldots, \chi_{A}\left(\lambda_{n}\right)\right) S^{-1}=0
$$

since the eigenvalues λ_{i} are zeros of χ_{A} by definition.
d) Consider the composition

$$
F: \operatorname{Mat}(n \times n, K) \xrightarrow{(\mathrm{id}, \chi)} \operatorname{Mat}(n \times n, K) \times P_{n} \xrightarrow{\mathrm{ev}} \operatorname{Mat}(n \times n, K)
$$

It is continuous as the composition of polynomial maps, so $F^{-1}(\{0\}) \subseteq \operatorname{Mat}(n \times$ $n, K)$ is closed. By part c) this closed set contains the non-empty open U, and since $\operatorname{Mat}(n \times n, K)$ is irreducible. Thus U is dense and so F is constant equal to 0 , proving Cayley-Hamilton.

Exercise 4. Compute the dimension of the sets

$$
T=\{A \in \operatorname{Mat}(2 \times 2, K): \operatorname{trace}(A)=0\}, \operatorname{Nil}_{2}=\{A \in \operatorname{Mat}(2 \times 2, K): A \text { nilpotent }\} .
$$

Solution. For $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we have $A(T)=K[a, b, c, d] /(a-d) \cong K[a, b, c]$ is a domain of Krull dimension 3, so T is irreducible of dimension 3. The subset $\mathrm{Nil}_{2} \subseteq T$ is cut out by the vanishing of the determinant $-a^{2}-b c$, which is a nonzero element of $A(T)$. Thus by Krull's principal ideal theorem, the set Nil_{2} is of pure dimension $3-1=2$.

