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Exercise 1. Show that a map F : An → Am of the form F (x) = (f1(x), . . . , fm(x)) with
f1, . . . , fm ∈ K[x1, . . . , xn] is continuous (with respect to the Zariski topology).
Note: Such polynomial maps will be examples of morphisms of affine varieties later, but
for the purpose of the exercises below we just need their continuity.

Solution. For a closed set Y = V (g1(y), . . . , gr(y)) ⊆ Am we have

F−1(Y ) = V (gi(f1(x), . . . , fm(x)) : i = 1, . . . , r) ⊆ An

is a again a vanishing locus of polynomials, hence closed.

Exercise 2. Given d ∈ N, we can identify the set Pd ⊆ K[x] of monic degree d
polynomials in with Ad by the map

Ad ∼−→ Pd, (a0, . . . , an−1) 7→ xd + ad−1x
d−1 + . . .+ a1x+ a0 .

a) Show that the set ∆2 ⊆ P2 of degree 2 polynomials with a double zero is a Zariski
closed subset.

b) Show that the set ∆d ⊆ Pd of degree d polynomials with a double zero is a hyper-
surface.
Hint: If you are stuck, you can try to google the word ”discriminant”.

c) Write down a polynomial map F : Ad−1 → Pd whose image is ∆d, and conclude
that ∆d is irreducible.

Solution.

a) A polynomial f = x2 + a1x + a0 has a double zero iff the discriminant a21 − 4a0
vanishes, which cuts out a closed subset of P2.

b) Again, f ∈ Pd has a double zero iff its discriminant vanishes, which is a (nonzero)
polynomial of degree

(
d
2

)
in the coefficients ad−1, . . . , a0. Thus its vanishing locus

∆d is a hypersurface as claimed.

c) The desired polynomial map is

F (a1, . . . , ad−1) = (x− a1)
2(x− a2) · · · (x− ad−1) ∈ ∆d ⊆ Pd .

Expanding the products out shows that the coefficients of F (a1, . . . , ad−1) depend
polynomially on a1, . . . , ad−1. Thus F is continuous by Exercise 1 and since its
domain Ad−1 is irreducible, its image ∆d = F (Ad−1) is likewise irreducible (as shown
on Exercise sheet 2).
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Exercise 3. (Cayley-Hamilton theorem)
In this exercise we show the Cayley-Hamilton theorem from linear algebra. It says that
for A ∈ Mat(n × n,K) with characteristic polynomial χA(x) = det(xEn − A) we have
χA(A) = 0.

a) Show (or convince yourself) that the maps

χ : Mat(n× n,K) → Pn, A 7→ χA

ev : Mat(n× n,K)× Pm → Mat(n× n,K), (A, f) 7→ f(A)

are polynomial maps in the sense of Exercise 1.

b) Show that the set U = {A ∈ Mat(n × n,K) : A has n distinct eigenvalues} is a
non-empty irreducible Zariski open subset of Mat(n× n,K).

c) Prove the Cayley-Hamilton theorem for A ∈ U .
Hint: Note that for S ∈ GL(n,K) and A ∈ Mat(n × n,K) we have f(SAS−1) =
Sf(A)S−1 for any f ∈ K[x].

d) Conclude that the Cayley-Hamilton theorem holds for all A ∈ Mat(n× n,K).

Solution.

a) The formulas for the determinant in χA(x) = det(xEn − A) and the matrix powers
and additions in f(A) show that these expressions depend polynomially on the
entries of A (and coefficients of f).

b) We have U = χ−1(Pn \ ∆n) is the preimage of the Zariski open set Pn \ ∆n and
thus open. Moreover, given n distinct elements λ1, . . . , λn the diagonal matrix D =
diag(λ1, . . . , λn) is contained in U , so U is non-empty (here we use that algebraically
closed fields are infinite).

c) Any matrix A ∈ U is diagonalizable, so there is S ∈ GL(n,K) with SAS−1 =
diag(λ1, . . . , λn) =: D. Then

χA(A) = SχA(D)S−1 = Sdiag(χA(λ1), . . . , χA(λn))S
−1 = 0

since the eigenvalues λi are zeros of χA by definition.

d) Consider the composition

F : Mat(n× n,K)
(id,χ)−−−→ Mat(n× n,K)× Pn

ev−→ Mat(n× n,K)

It is continuous as the composition of polynomial maps, so F−1({0}) ⊆ Mat(n ×
n,K) is closed. By part c) this closed set contains the non-empty open U , and
since Mat(n × n,K) is irreducible. Thus U is dense and so F is constant equal to
0, proving Cayley-Hamilton.

Exercise 4. Compute the dimension of the sets

T = {A ∈ Mat(2× 2, K) : trace(A) = 0},Nil2 = {A ∈ Mat(2× 2, K) : A nilpotent} .

Solution. For A =

(
a b
c d

)
we have A(T ) = K[a, b, c, d]/(a − d) ∼= K[a, b, c] is a domain

of Krull dimension 3, so T is irreducible of dimension 3. The subset Nil2 ⊆ T is cut out
by the vanishing of the determinant −a2 − bc, which is a nonzero element of A(T ). Thus
by Krull’s principal ideal theorem, the set Nil2 is of pure dimension 3− 1 = 2.
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