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Exercise 1. A linear algebraic group is a tuple (G,m, i, e) of an affine variety G,
morphisms

m : G×G → G and i : G → G

and a point e ∈ G such that

m(m(g1, g2), g3) = m(g1,m(g2, g3))

m(e, g) = m(g, e) = g

m(g, i(g)) = m(i(g), g) = e

for all g, g1, g2, g3 ∈ G. We think of m(g, h) = g ◦ h as the group operation, e ∈ G as the
neutral element of the group and i(g) = g−1 as the inverse element in the group.

Show that the following are examples of linear algebraic groups (provide the full data
(G,m, i, e) above, show that m, i are morphisms and check as many of the properties as
you find interesting):

a) Ga = A1 with addition +

b) Gm = A1 \ {0} with multiplication ·

c) µ2 = {1,−1} with multiplication ·

d) GLn = {A ∈ Mat(n× n,K) : A invertible} with matrix multiplication
Hint: If you are stuck, you can look up the ”adjugate matrix” on wikipedia.

Solution.

a) We have m(x, y) = x+y and i(x) = −x are morphisms since they are polynomial in
the coordinates x, y and x on A1 × A1 and A1. The neutral element is e = 0 ∈ A1.

b) We have m(x, y) = x · y and i(x) = 1/x are morphisms since they are regular
functions on (A1 \ {0})2 and A1 \ {0} with image in A1 \ {0} ⊆ A1. The neutral
element is e = 1 ∈ A1 \ {0}.

c) We have that µ2 ⊆ Gm is a closed subvariety and the restrictions of m, i from Gm

to µ2 × µ2 and µ2 have image in µ2. Thus they give rise to morphisms, and e = 1
is contained in µ2 as well.
Note: µ2 is an example of a closed algebraic subgroup of Gm.

d) The composition map m(A,B) = A · B is polynomial and hence a morphism. To
see that the inverse map i(A) = A−1 is an algebraic morphism, we have to show
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that the (i, j)-entry of A−1 ∈ Mat(n × n,K) = An2
is a regular function on GLn.

But by linear algebra, this entry is given by

(−1)i+j

det(A)
·Mj,i

where Mi,j is the determinant of the matrix obtained from A by deleting the i-th
row and j-th column. Since GLn = D(det) ⊆ Mat(n×n,K), this is indeed a regular
function.

Exercise 2. In this exercise, we want to show the following nice topological property
of linear algebraic groups:

Proposition Any connected linear algebraic group G is irreducible.

a) LetX, Y be affine varieties and y0 ∈ Y . Show that the constant mapX → Y, x 7→ y0
is a morphism.
Bonus challenge: Show the same thing for X, Y prevarieties!

b) Show that for h ∈ G the left-translation

th : G → G, g 7→ m(h, g)

is an isomorphism.

c) Show that for any two points p, q ∈ G there is an isomorphism φ : G → G with
φ(p) = q.

d) Let X be a connected topological space with irreducible decomposition X = X1 ∪
. . . ∪Xn with n ≥ 2. Show that there exist

• a point p ∈ X lying on a unique (i.e. exactly one) irreducible component Xi,

• a point q ∈ X lying on at least two irreducible components

e) Prove the proposition above.

Solution.

a) For Y ⊆ Am, the coordinates of the map x 7→ y0 are constant functions, and thus
regular on X. By our criterion from the lecture, this proves that the map X → Y
is a morphism.
Bonus challenge: Cover X by affine varieties Xi and let U ⊆ Y be an affine open
containing y0. By the proof above, all functions Xi → U, x 7→ y0 are morphisms,
and they agree on overlaps Xi ∩Xj. Thus they glue to a unique morphism X → U ,
which is given by x 7→ y0. Composing this with the inclusion morphism U → Y0 we
obtain the desired morphism X → Y .

b) To see that the map th is a morphism, first note that the map

(h, idG) : G → G×G, g 7→ (h, g) ,

is a morphism by the universal property of the product G × G (since both the
constant map G 7→ G, g 7→ h and the identity are morphisms). Then th is the
composition th = m ◦ (h, idG). By the properties of linear algebraic groups, the
inverse of th is given by ti(h).
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c) The desired isomorphism is φ = tm(q,i(p)) since

tm(q,i(p))(p) = m(m(q, i(p)), p) = m(q,m(i(p), p)) = m(q, e) = q .

d) To find p, note that the inclusion Y := (X1 ∩ X2) ∪ . . . ∪ (X1 ∩ Xn) ⊆ X1 must
be strict, since otherwise the irreducible set X1 has a finite cover by strict closed
subsets, a contradiction. Take p any point of X1 \ Y .

Note: The above property (irreducible spaces have no finite cover by strict closed
subsets) follows from the definition of irreducibility by an induction argument!

To find q, note that X1 must intersect one of the components X2, . . . , Xn, since
otherwise X = X1 ⊔ (X2 ∪ . . . ∪Xn) is a decomposition into disjoint closed sets, a
contradiction to X being connected. We can take q to be an intersection point of
X1 with X2 ∪ . . . ∪Xn.

e) Assume X = G was connected but not irreducible. By part d) we find a point
p ∈ G lying on exactly one irreducible component, and a point q ∈ G lying on at
least two. But by part c) there exists an isomorphism φ : G → G sending p to q.
However, the map φ then induces a bijection from the irreducible components of G
to themselves, sending those components containing p to those containing q. Since
these sets don’t have the same cardinality, this gives a contradiction.
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