Presence Sheet 4

Exercise 1. A linear algebraic group is a tuple (G, m, i, e) of an affine variety G, morphisms

$$
m: G \times G \rightarrow G \text { and } i: G \rightarrow G
$$

and a point $e \in G$ such that

$$
\begin{aligned}
m\left(m\left(g_{1}, g_{2}\right), g_{3}\right) & =m\left(g_{1}, m\left(g_{2}, g_{3}\right)\right) \\
m(e, g) & =m(g, e)=g \\
m(g, i(g)) & =m(i(g), g)=e
\end{aligned}
$$

for all $g, g_{1}, g_{2}, g_{3} \in G$. We think of $m(g, h)=g \circ h$ as the group operation, $e \in G$ as the neutral element of the group and $i(g)=g^{-1}$ as the inverse element in the group.

Show that the following are examples of linear algebraic groups (provide the full data (G, m, i, e) above, show that m, i are morphisms and check as many of the properties as you find interesting):
a) $\mathbb{G}_{a}=\mathbb{A}^{1}$ with addition +
b) $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}$ with multiplication.
c) $\mu_{2}=\{1,-1\}$ with multiplication.
d) $\mathrm{GL}_{n}=\{A \in \operatorname{Mat}(n \times n, K): A$ invertible $\}$ with matrix multiplication Hint: If you are stuck, you can look up the "adjugate matrix" on wikipedia.

Solution.

a) We have $m(x, y)=x+y$ and $i(x)=-x$ are morphisms since they are polynomial in the coordinates x, y and x on $\mathbb{A}^{1} \times \mathbb{A}^{1}$ and \mathbb{A}^{1}. The neutral element is $e=0 \in \mathbb{A}^{1}$.
b) We have $m(x, y)=x \cdot y$ and $i(x)=1 / x$ are morphisms since they are regular functions on $\left(\mathbb{A}^{1} \backslash\{0\}\right)^{2}$ and $\mathbb{A}^{1} \backslash\{0\}$ with image in $\mathbb{A}^{1} \backslash\{0\} \subseteq \mathbb{A}^{1}$. The neutral element is $e=1 \in \mathbb{A}^{1} \backslash\{0\}$.
c) We have that $\mu_{2} \subseteq \mathbb{G}_{m}$ is a closed subvariety and the restrictions of m, i from \mathbb{G}_{m} to $\mu_{2} \times \mu_{2}$ and μ_{2} have image in μ_{2}. Thus they give rise to morphisms, and $e=1$ is contained in μ_{2} as well.
Note: μ_{2} is an example of a closed algebraic subgroup of \mathbb{G}_{m}.
d) The composition map $m(A, B)=A \cdot B$ is polynomial and hence a morphism. To see that the inverse map $i(A)=A^{-1}$ is an algebraic morphism, we have to show
that the (i, j)-entry of $A^{-1} \in \operatorname{Mat}(n \times n, K)=\mathbb{A}^{n^{2}}$ is a regular function on GL_{n}. But by linear algebra, this entry is given by

$$
\frac{(-1)^{i+j}}{\operatorname{det}(A)} \cdot M_{j, i}
$$

where $M_{i, j}$ is the determinant of the matrix obtained from A by deleting the i-th row and j-th column. Since $\mathrm{GL}_{n}=D(\operatorname{det}) \subseteq \operatorname{Mat}(n \times n, K)$, this is indeed a regular function.

Exercise 2. In this exercise, we want to show the following nice topological property of linear algebraic groups:

Proposition Any connected linear algebraic group G is irreducible.
a) Let X, Y be affine varieties and $y_{0} \in Y$. Show that the constant map $X \rightarrow Y, x \mapsto y_{0}$ is a morphism.
Bonus challenge: Show the same thing for X, Y prevarieties!
b) Show that for $h \in G$ the left-translation

$$
t_{h}: G \rightarrow G, g \mapsto m(h, g)
$$

is an isomorphism.
c) Show that for any two points $p, q \in G$ there is an isomorphism $\varphi: G \rightarrow G$ with $\varphi(p)=q$.
d) Let X be a connected topological space with irreducible decomposition $X=X_{1} \cup$ $\ldots \cup X_{n}$ with $n \geq 2$. Show that there exist

- a point $p \in X$ lying on a unique (i.e. exactly one) irreducible component X_{i},
- a point $q \in X$ lying on at least two irreducible components
e) Prove the proposition above.

Solution.

a) For $Y \subseteq \mathbb{A}^{m}$, the coordinates of the map $x \mapsto y_{0}$ are constant functions, and thus regular on X. By our criterion from the lecture, this proves that the map $X \rightarrow Y$ is a morphism.
Bonus challenge: Cover X by affine varieties X_{i} and let $U \subseteq Y$ be an affine open containing y_{0}. By the proof above, all functions $X_{i} \rightarrow U, x \mapsto y_{0}$ are morphisms, and they agree on overlaps $X_{i} \cap X_{j}$. Thus they glue to a unique morphism $X \rightarrow U$, which is given by $x \mapsto y_{0}$. Composing this with the inclusion morphism $U \rightarrow Y_{0}$ we obtain the desired morphism $X \rightarrow Y$.
b) To see that the map t_{h} is a morphism, first note that the map

$$
\left(h, \mathrm{id}_{G}\right): G \rightarrow G \times G, g \mapsto(h, g),
$$

is a morphism by the universal property of the product $G \times G$ (since both the constant map $G \mapsto G, g \mapsto h$ and the identity are morphisms). Then t_{h} is the composition $t_{h}=m \circ\left(h, \mathrm{id}_{G}\right)$. By the properties of linear algebraic groups, the inverse of t_{h} is given by $t_{i(h)}$.
c) The desired isomorphism is $\varphi=t_{m(q, i(p))}$ since

$$
t_{m(q, i(p))}(p)=m(m(q, i(p)), p)=m(q, m(i(p), p))=m(q, e)=q .
$$

d) To find p, note that the inclusion $Y:=\left(X_{1} \cap X_{2}\right) \cup \ldots \cup\left(X_{1} \cap X_{n}\right) \subseteq X_{1}$ must be strict, since otherwise the irreducible set X_{1} has a finite cover by strict closed subsets, a contradiction. Take p any point of $X_{1} \backslash Y$.
Note: The above property (irreducible spaces have no finite cover by strict closed subsets) follows from the definition of irreducibility by an induction argument!
To find q, note that X_{1} must intersect one of the components X_{2}, \ldots, X_{n}, since otherwise $X=X_{1} \sqcup\left(X_{2} \cup \ldots \cup X_{n}\right)$ is a decomposition into disjoint closed sets, a contradiction to X being connected. We can take q to be an intersection point of X_{1} with $X_{2} \cup \ldots \cup X_{n}$.
e) Assume $X=G$ was connected but not irreducible. By part d) we find a point $p \in G$ lying on exactly one irreducible component, and a point $q \in G$ lying on at least two. But by part c) there exists an isomorphism $\varphi: G \rightarrow G$ sending p to q. However, the map φ then induces a bijection from the irreducible components of G to themselves, sending those components containing p to those containing q. Since these sets don't have the same cardinality, this gives a contradiction.

