Presence Sheet 5

Exercise 1. Let $0 \neq f \in K\left[x_{0}, x_{1}\right]$ be a nonzero homogeneous polynomial of degree $d \geq 0$.
a) Let $g\left(x_{1}\right)=f\left(1, x_{1}\right)$ be the dehomogenization of f. Show that

$$
f\left(x_{0}, x_{1}\right)=x_{0}^{d} \cdot g\left(x_{1} / x_{0}\right)
$$

b) Show that f has a decomposition

$$
f=\left(b_{1} x_{0}-a_{1} x_{1}\right) \cdot\left(b_{2} x_{0}-a_{2} x_{1}\right) \cdots\left(b_{d} x_{0}-a_{d} x_{1}\right)
$$

into linear factors.
c) Show that the vanishing set of f is given by

$$
V(f)=\left\{\left(a_{1}: b_{1}\right), \ldots,\left(a_{d}: b_{d}\right)\right\} \subseteq \mathbb{P}^{1}
$$

We say that the $\left(a_{i}: b_{i}\right)$, counted with multiplicity, are the zeros of f on \mathbb{P}^{1}. Note: These multiplicities sum to the degree d of the polynomial.

Solution.

a) The two sides of the formula are linear in f, so it suffices to check them for the monomials $f=x_{0}^{i} x_{1}^{d-i}$ whose linear combinations give all homogeneous degree d polynomials in x_{0}, x_{1}. For these the formula is obvious since $x_{0}^{d}\left(x_{1} / x_{0}\right)^{d-i}=x_{0}^{i} x_{1}^{d-i}$.
b) Let $g=f^{i} \in K\left[x_{1}\right]$ be the dehomogenization of f and let d^{\prime} be the degree of g. Then since K is algebraically closed, the polynomial g decomposes into a product

$$
g\left(x_{1}\right)=\lambda \cdot\left(x_{1}-z_{1}\right) \cdot\left(x_{1}-z_{2}\right) \cdots\left(x_{1}-z_{d^{\prime}}\right)
$$

Plugging in the formula from part a) we thus have

$$
\begin{aligned}
f & =x_{0}^{d} \cdot \lambda \cdot\left(\frac{x_{1}}{x_{0}}-z_{1}\right) \cdot\left(\frac{x_{1}}{x_{0}}-z_{2}\right) \cdots\left(\frac{x_{1}}{x_{0}}-z_{d^{\prime}}\right) \\
& =x_{0}^{d-d^{\prime}} \cdot\left(\lambda x_{1}-\lambda z_{1} x_{0}\right) \cdot\left(x_{1}-z_{2} x_{0}\right) \cdots\left(x_{1}-z_{d^{\prime}} x_{0}\right),
\end{aligned}
$$

which (basically) has the desired shape.
c) The product is zero if and only if one of the factors is zero. But these are the determinants of the matrices $\left(\begin{array}{cc}a_{i} & b_{i} \\ x_{0} & x_{1}\end{array}\right)$ so this happens if and only if the vectors $\left(x_{0}, x_{1}\right)$ and $\left(a_{i}, b_{i}\right)$ are linearly dependent. This in turn is equivalent to $\left(x_{0}: x_{1}\right)=$ $\left(a_{i}: b_{i}\right) \in \mathbb{P}^{1}$.

Exercise 2. A homogeneous polynomial $f \in K\left[x_{0}, x_{1}\right]$ of degree $d \geq 0$ is given by

$$
f=f_{c}=c_{0} x_{0}^{d}+c_{1} x_{0}^{d-1} x_{1}+\ldots+c_{d-1} x_{0} x_{1}^{d-1}+c_{d} x_{1}^{d} .
$$

In the following we identify the space Poly_{d} of such nonzero polynomials up to scaling with \mathbb{P}^{d} by sending the class $\left[f_{c}\right]$ of the polynomial f_{c} to the vector $c=\left(c_{0}: c_{1}: \ldots: c_{d}\right) \in \mathbb{P}^{d}$.

For the following sets, decide if they are open, closed or not-well-defined in Poly ${ }_{d}=\mathbb{P}^{d}$, and in the first two cases compute their dimension (assume $d \geq 1$ for simplicity).
a) $A=\left\{[f] \in\right.$ Poly $_{d}: f\left(p_{0}\right)=0$ for $\left.p_{0}=(1: 0) \in \mathbb{P}^{1}\right\}$
b) $B=\left\{[f] \in\right.$ Poly $_{d}: f\left(p_{0}\right)=f\left(p_{1}\right)$ for $\left.p_{0}=(1: 0), p_{1}=(0: 1) \in \mathbb{P}^{1}\right\}$
c) $C=\left\{[f] \in\right.$ Poly $_{d}$: all zeros of f have multiplicity 1$\}$

Bonus exercise (optional; guess an answer - proof needs tools we'll not discuss):
d) $D=\left\{[f] \in\right.$ Poly $_{d}: f$ has a zero of order at least 3$\}$

Solution.

a) Condition $f\left(p_{0}\right)=0$ for $f=f_{c}$ is equivalent to $c_{0}=0$, so $A=V\left(p_{0}\right) \subseteq$ Poly $_{d}=\mathbb{P}^{d}$ is closed. Its cone is given by $C(A)=\{0\} \times \mathbb{A}^{d} \subseteq \mathbb{A}^{d}$, so its dimension is $\operatorname{dim} A=$ $\operatorname{dim} C(A)-1=d-1$.
b) It's not well-defined to compare the values of f at p_{0}, p_{1} : e.g. $f\left(x_{0}, x_{1}\right)=x_{0}+x_{1}$ has $f(0,1)=f(1,0)=1$, but choosing a different representative $p_{1}=(0: 2) \in \mathbb{P}^{1}$ we have $f(0,2) \neq f(1,0)$.
c) There is a homogeneous discriminant polynomial $\operatorname{Disc}\left(f_{c}\right)$ which vanishes if and only if f has a zero of higher multiplicity. Thus $C=D\left(\operatorname{Disc}\left(f_{c}\right)\right)$ is open (and non-empty) in \mathbb{P}^{d} and thus of dimension d.
d) The set D is the image of the map

$$
P: \text { Poly }_{1} \times \text { Poly }_{d-3} \rightarrow \text { Poly }_{d},([f],[g]) \mapsto\left[f^{3} \cdot g\right]
$$

Since the domain of this map is irreducible and complete (see material of current week), the image D of this map is irreducible and closed. Moreover, the map P is one-to-one over an open subset of its image. By results on dimension theory we did not cover in class (see e.g. [Vakil, Corollary 12.4.2]) this implies that $\operatorname{dim} D=$ dim Poly $_{1} \times$ Poly $_{d-3}=d-2$. This might agree with the intuition that imposing a triple zero is a codimension 2 condition.

Exercise 3. An effective divisor of degree d on \mathbb{P}^{1} is a formal linear combination $D=$ $m_{1} p_{1}+\ldots+m_{k} p_{k}$ of finitely many points $p_{i} \in \mathbb{P}^{1}$ with $m_{i} \in \mathbb{N}$ such that $m_{1}+\ldots+m_{k}=d$. E.g. examples of effective divisors of degree 3 are:

$$
\begin{equation*}
D_{1}=(0: 1)+(1: 1)+(1: 0) \text { and } D_{2}=2 \cdot(1: 2)+(1: 3) . \tag{1}
\end{equation*}
$$

Let $\mathrm{Eff}{ }_{d}$ be the set of such effective divisors.
a) Show that the map

$$
\begin{equation*}
\Psi: \mathrm{Eff}_{d} \rightarrow \operatorname{Poly}_{d} \cong \mathbb{P}^{d}, D=\sum_{i=1}^{k} m_{i}\left(a_{i}: b_{i}\right) \mapsto\left[\prod_{i=1}^{k}\left(b_{i} x_{0}-a_{i} x_{1}\right)^{m_{i}}\right] \tag{2}
\end{equation*}
$$

is well-defined and bijective. Thus we can interpret \mathbb{P}^{d} as the set of effective divisors of degree d on \mathbb{P}^{1}.
b) What are the images of D_{1}, D_{2} from (1) under Ψ ?

Solution.

a) The map Ψ is well-defined since changing the representatives of the points $\left(a_{i}: b_{i}\right)$ in D by scaling also scales the resulting polynomial representing $\Psi(D)$. It is injective since we can recover D as the sum of zeros of $\Psi(D)$, counted with multiplicities. On the other hand it's surjective by Exercise 1 above.
b) These images are given by

$$
\Psi\left(D_{1}\right)=\left[x_{0} x_{1}\left(x_{0}-x_{1}\right)\right] \text { and } \Psi\left(D_{2}\right)=\left[\left(2 x_{0}-x_{1}\right)^{2} \cdot\left(3 x_{0}-x_{1}\right)\right] .
$$

