ETH Zurich, Algebraic Geometry, Spring 2024 Lecturer: Johannes Schmitt

Presence Sheet 6

Exercise 1. Consider the (irreducible) affine curve
X0 =V(2d -2} +2,— 1) CAZ.

a) What are the points in the projective closure X = X' C P27
Note: The curve X is an example of an elliptic curve.

b) Given a,b € X with a # b, there is a unique line L, C P% through a,b, which
intersects X in a third point f(a,b), counted with multiplicity.

f(a,b)

—24
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Compute f(a,b) for

)a=(1:—-1:1)andb=(1:0:1)
i) a=(1:0:1)andb=(0:0:1)

¢) Show that U = {(a,b) € X x X : a # b} is an open subset of X x X.
Hint: Using results from the lecture, there is a one-sentence argument for this!

d) Optional: Show that the map U — X, (a,b) — f(a,b) is a morphism.

Fact: The morphism f : U — X extends uniquely to a morphism f : X x X — X.
Then we can define a group structure (X, @, e) on X which is uniquely determined by the
property that e = (0: 0: 1) is the neutral element and

a®dbd f(a,b) =e (1)

for all a,b € X. For the following exercise parts, you can assume this fact without proof.
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e) Use to express a @ b using the function f and show that the map X x X —
X, (a,b) — a @ b is a morphism.

f) Show that f(a,b) = f(b,a) and conclude that the group (X, ®,e) is abelian.

This is an example of the group law on an elliptic curve. The analogous construction over
finite fields is used in elliptic-curve cryptography.

Solution.

a) To find the projective closure, we homogenize the equation g = 22 — 23 + 2, — 1 of
2°, finding

gh

Intersecting with the line V' (x) at infinity, we obtain

2 3 2 3
ToTy — ] + TpT1 — Xy -

X\ X =V(¢g" 20) =V (—22 20) = {(0:0:1)}.
b) As seen in the lecture, the line L, is given by
Loy ={sa+1th:(s:t) € Pt} CPZ,

where for simplicity we choose some representatives a, b € C3 of the points in P2. To
obtain the third solution point f(a,b), we calculate g"(sa+1tb), note that it vanishes
for s =0 or t = 0 (since a,b € X) and compute the third point (sg : ty) for which
it vanishes. Then f(a,b) = soa + tob.

i) For the first set of points we have
sa+th=(s+t:—s:s+t)
Plugging into ¢" we obtain

g"(sa+tb) = (s+1)- (s+1t)> = (=)’ + (s +1)* (—=s) — (s +1)?
=5 —s(s+1)? = s(s? — 5% — 25t — t?) = —st(t + 2s).

So the third solution apart from s = 0 and ¢t = 0 is ¢ = —2s, leading to the
point sa +tb = s(a — 2b) = s(—1,—1,—1) and thus f(a,b) =(-1:—-1:—-1) =
(I:1:1).

ii) We have sa +tb = (s:0:s+t) and plugging into f* we obtain
g"(sa +tb) = s(s +1)* — s* = s(s% + 2st +1* — %) = st(2s + 1)

and so the third solution is (again) given by t = —2s, leading to sa + tb =
s(1,0,—1) and so f(a,b) = (1:0:—1).

c) As seen in class, the projective variety X is a variety and so Ax = X x X \ U is
closed in X x X, hence U is open.

d) Similar to part b) we note that ¢"(sa + tb) is a homogeneous polynomial of degree
3 in the variables sa;, tb; for i = 0,1,2. The assumption a,b € X implies g"(a) =
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g"(b) = 0, so that this polynomial vanishes when substituting s = 0 or ¢t = 0. Thus
separating out the variables s,¢ we have

g"(sa+1th) =t>  go(a,b)  +st’gi(a,b) + s’tgs(a,b) +s°  gs(a,b)
—— ——

=0 since g"|s=0=0 =0 since g"|;=0=0

where ¢; is bihomogeneous of degree 1 in a and 2 in b, and g is bihomogeneous
of degree (2,1). From this we see that the third solution (sqg : ty) is given by
(so :to) = (g1(a,b) : —ga(a, b)) leading to the point

f(a7 b) =0 <a7 b)a + 92(a7 b)b

This is again an expression which is homogeneous of degree 3 in both a, b, and thus it
gives a morphisms at all points where it is defined. Since a, b are by definition linearly
independent, the only possibility for it to be not well-defined is when g;(a,b) =
ga(a,b) = 0, which would imply that g" vanishes identically on the line L. This is
impossible since X is an irreducible curve of degree 3 and thus does not contain a
line.

From the equation (1)) we see that a @ b is the additive inverse of f(a,b). But given
c € X we also have e®c® f(e, ¢) = e which shows that f(e, c) is the additive inverse
of c¢. Substituting ¢ = f(a,b) we see

a@b= f(e, f(a.b).

Since f is a morphisms, the map (a, b) — a®b is also a morphism as the composition

Xx X4 x 9 v x 4ox,

where e : X — X, ¢+ e is the constant map.

By definition, for (a,b) with a # b the point f(a,b) is the third intersection point of
the line Ly, with X. But Ly, = Ly, and so f(a,b) = f(b,a) for (a,b) € U. But since
U C X x X is non-empty and open, it is also dense (as X is irreducible) and so this
equality also holds on all of X. Here we use that the two morphisms X x X — X
given by (a,b) — f(a,b) and (a,b) — f(b,a) agree on a closed set since X is a
variety.

To conclude we just observe

a®b= f(e, f(a,b)) = f(e, f(bya)) =bDa.
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