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Presence Sheet 7

On this exercise sheet, we’ll talk a bit about the topology of algebraic varieties (and
work over the field K = C of the complex numbers everywhere). If X is a topological
space, its Euler characteristic is defined as the alternating sum

χ(X) =
∞∑
i=0

(−1)i dimQ Hi(X(C),Q)

of the dimensions of its homology groups (where we write X(C) for the space X with the
complex topology).

However, even without knowing anything about homology groups (and only using
the Zariski topology), you can do the entire sheet below just using the following three
properties of the Euler characteristic of (complex) algebraic varieties:

(A) If X is a variety which can be written as a disjoint union X = X1 ⊔ . . . ⊔ Xm of
finitely many locally closed1 sets Xi ⊆ X, then χ(X) = χ(X1) + . . .+ χ(Xm).

(B) If π : X → Y is a morphism, such that all fibers Xq = π−1(q) have the same Euler
characteristic χ(Xq) = d for q ∈ Y , then χ(X) = d · χ(Y ).

(C) We have χ({pt}) = χ(A1) = 1.

Exercise 1. (Basic spaces)

a) Calculate χ(P1) and χ(A1 \ {0}).

b) Show that χ(X × Y ) = χ(X) · χ(Y ) for X, Y algebraic varieties.

c) Calculate χ(An).

d) Calculate χ(Pn).

Hint: Start with n = 2 in c) and d) if you are stuck.

Solution.

a) We have that {(0 : 1)} ⊆ P1 is closed with complement A1, and so we get a
locally closed decomposition P1 = A1 ⊔ {(0 : 1)}. Using the properties of Euler
characteristics, we have

χ(P1)
(A)
= χ(A1) + χ({(0 : 1)}) (C)

= 1 + 1 = 2 .

1Recall that a set S ⊆ X is locally closed if it can be written as the intersection S = U ∩C of a Zariski
open set U ⊆ X and a Zariski closed set C ⊆ X.
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On the other hand A1 = (A1 \ {0}) ⊔ {0} which proves

χ(A1)︸ ︷︷ ︸
=1

= χ(A1 \ {0}) + χ({0})︸ ︷︷ ︸
=1

and so χ(A1 \ {0}) = 0.

b) Let π : X×Y → Y be the projection morphism. For any q ∈ Y we have π−1({q}) =
X × {q} ∼= X has Euler characteristic d = χ(X). So by property (B) we have
χ(X × Y ) = d · χ(Y ) = χ(X) · χ(Y ).

c) Applying part b) we have χ(A2) = χ(A1) · χ(A1) = 1 · 1 = 1 and by induction
χ(An) = χ(An−1) · χ(A1) = 1.

d) We have Pn = An ⊔ V (x0) with V (x0) ∼= Pn−1. Thus

χ(Pn) = χ(An) + χ(Pn−1)︸ ︷︷ ︸
=n by induction

= n+ 1 ,

where we can use e.g. χ(P0) = χ({pt}) = 1 as the induction start.

Exercise 2. (Fancier spaces)

a) Calculate χ(X) for X = V (x1x2) ⊆ A2.

b) Let Qn ⊆ Pn denote an irreducible quadric hypersurface. Calculate χ(Q2) for all
such hypersurfaces and χ(Q3) for one such hypersurface. What happens for a
reducible quadric hypersurface in P2?

Solution.

a) We haveX = V (x1)∪V (x2) with V (x1) ∼= V (x2) ∼= A1 and V (x1)∩V (x2) = {(0, 0)}.
Thus we get a locally closed decomposition X = (A1 \ {0}) ⊔ {(0, 0)} ⊔ (A1 \ {0})
and so χ(X) = 0 + 1 + 0 = 1.

b) We have seen that any irreducible conic Q2 in P2 is isomorphic to P1 (via projection
from a point on Q2) so χ(Q2) = χ(P1) = 2. On the other hand, we have seen that
Q3 = V (x0x3 − x1x2) ⊆ P3 is isomorphic to P1 ×P1 via the Segre embedding. Thus
in this case χ(Q3) = χ(P1)× χ(P1) = 2 · 2 = 4 using Exercise 1, part b).
Note: In fact any such irreducible quadric hypersurface Q3 has Euler characteristic
4 (this follows e.g. by Ehrensmann’s theorem over the connected moduli space of
quadric hypersurfaces, using methods we have not yet seen in class).

Any reducible quadric Q2 is cut out by a reducible quadric polynomial which decom-
poses as the product of two linear polynomials (which are distinct, since otherwise
their vanishing set would not be a quadric but just a plane). Thus Q2 = L1 ∪ L2 is
the union of two lines, meeting in a single point p. Thus

χ(Q2) = χ( L1 \ {q}︸ ︷︷ ︸
∼=P1\{pt}=A1

) + χ({q}) + χ( L2 \ {q}︸ ︷︷ ︸
∼=P1\{pt}=A1

) = 1 + 1 + 1 = 3 .
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Exercise 3. (Fanciest spaces)

a) Compute the Euler characteristic χ(G(2, 4)).
Hint: Look at [Gathmann, Remark 8.20].
Bonus: Can you find the formula for χ(G(k, n))?

b) Let 0 ̸= f ∈ K[x1] be a homogeneous polynomial of degree 2g + 2 for some g ∈ N
which has only simple zeros. Consider the affine curve

C = {(x1, x2) ∈ A2 : x2
2 = f(x1)} ⊆ A2

The variety C is called an affine hyperelliptic curve of genus g. Show that χ(C) =
−2g.
Hint: Try to find a morphism from C to a simpler space, which has finite fibers.

Solution.

a) We follow the cited Remark 8.20 in [Gathmann]: any 2-plane inK4 can be generated
by the rows of a 2×4-matrix M . These generators are unique up to row operations.
On the other hand, the matrix M has a unique row-reduced echelon form M̃ . The
possible shapes of this form M̃ are(
1 0 ∗ ∗
0 1 ∗ ∗

)
,

(
1 ∗ 0 ∗
0 0 1 ∗

)
,

(
1 ∗ ∗ 0
0 0 0 1

)
,

(
0 1 0 ∗
0 0 1 ∗

)
,

(
0 1 ∗ 0
0 0 0 1

)
,

(
0 0 1 0
0 0 0 1

)
.

where all entries ∗ represent arbitrary numbers in K. Then it’s true that each subset
of G(2, 4) representing a given shape of M̃ is locally closed, and isomorphic to an

affine space An for n the number of ∗-entries in M̃ . Each of these sets has Euler
characteristic 1, so using property (A) we have

χ(G(2, 4)) = #{shapes of M̃} = 6 .

Using the same argument for G(k, n), we note that the shapes of the row-reduced

echelon form M̃ are precisely specified by choosing the k columns in the matrix
where we write a 1. There are

(
n
k

)
such choices, so χ(G(k, n)) =

(
n
k

)
.

b) Consider the projection morphism

π : C → A1, (x1, x2) 7→ x1 .

Let’s calculate the number of preimages π−1(q) for q ∈ A1.

To do this, let V (f) = {q1, . . . , q2g+2} ⊆ A1 be the 2g + 2 zeros of f (here we use
that all zeros of f have multiplicity exactly 1). Then since the equation x2

2 = r has
two solutions in C for r ̸= 0 and one solution otherwise, we have:

#π−1(q) =

{
2 if q ∈ U = A1 \ V (f)

1 if q ∈ V (f) = {q1, . . . , q2g+2} .
(1)

We want to apply property (B) to calculate the Euler characteristic, but the problem
is, that the number of preimages is not the same everywhere. The final trick is to
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just decompose both A1 and C into locally closed pieces, on which the degree is
constant: we have that the maps

π−1(U)
π−→ U and π−1(V (f))

π−→ V (f)

are morphisms of varieties, with 2, 1 preimages at any point, respectively. Thus

χ(C)
(A)
= χ(π−1(U)) + χ(π−1(V (f)))

(B)
= 2 · χ(U) + 1 · χ(V (f)) .

We have that V (f) is the disjoint union of 2g+2 points, so χ(V (f)) = 2g+2. On the
other hand, if one adds this number to the Euler characteristic χ(U) = χ(A1 \V (f))
one needs to recover χ(A1) = 1. Thus χ(U) = 1−χ(V (f)) = 1−(2g+2) = −2g−1.
Plugging this into the formula above, we have

χ(C) = 2 · (−2g − 1) + 1 · (2g + 2) = −2g .
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