Presence Sheet 8

Exercise 1. (Rational maps $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$)

a) Let $f_{1}, f_{2} \in K\left[x_{0}, x_{1}\right]$ be two non-zero homogeneous polynomials of the same degree $d \geq 0$. Show that the assignment

$$
\begin{equation*}
f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, x \mapsto\left(f_{1}(x): f_{2}(x)\right) \tag{1}
\end{equation*}
$$

gives a rational map. What is the open set of \mathbb{P}^{1} where it is defined?
b) Compute the domain of definition of f for $f_{1}=x_{0}^{2}+x_{0} x_{1}$ and $f_{2}=x_{0} x_{1}+x_{1}^{2}$. Show that on its domain of definition, f is given by the identity function (and thus can be extended to all of \mathbb{P}^{1}).
c) Use the idea of the last part to show that any map f as in (1) can be extended to all of \mathbb{P}^{1}.
Hint: It might help to do an induction on the degree d.
d) Let $g \in K[x]$ be a non-constant polynomial with associated distinguished open $D(g) \subseteq \mathbb{A}^{1}$ and $\widetilde{f}: D(g) \rightarrow \mathbb{A}^{1}$ a morphism. Seeing $D(g) \subseteq \mathbb{A}^{1} \subseteq \mathbb{P}^{1}$ show that there is a rational map $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of the form (1) that agrees with \widetilde{f} on an open subset of \mathbb{P}^{1}.
e) Conclude that any rational map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ can be extended to a morphism $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.

Solution.

a) We showed in [Gathmann, Lemma 7.4] that f gives a well-defined morphism on the complement of $V\left(f_{1}, f_{2}\right)$. This complement is open and non-empty by assumption (since f_{1}, f_{2} are non-zero).
b) The rational map f is undefined exactly on

$$
V\left(x_{0}^{2}+x_{0} x_{1}, x_{0} x_{1}+x_{1}^{2}\right)=V\left(x_{0}\left(x_{0}+x_{1}\right), x_{1}\left(x_{0}+x_{1}\right)\right)=\underbrace{V\left(x_{0}, x_{1}\right)}_{=\emptyset} \cup \underbrace{V\left(x_{0}+x_{1}\right)}_{=\{(1:-1)\}} .
$$

Away from the point ($1:-1$) the quantity $x_{0}+x_{1}$ is nonzero, so we can divide both components of f by this and obtain

$$
f\left(x_{0}: x_{1}\right)=\left(x_{0}\left(x_{0}+x_{1}\right): x_{1}\left(x_{0}+x_{1}\right)\right)=\left(x_{0}: x_{1}\right),
$$

so indeed f equals the identity there.
c) We prove the statement by induction on d. When $d=0$ both f_{1}, f_{2} are non-zero constants so f is also constant and defined everywhere.
Assume the statement is proven up to degree $d-1$ and let f_{1}, f_{2} be non-zero homogeneous of degree d. If they do not have a common zero $(a: b)$, then f is defined everywhere and we are done. Otherwise, both f_{1}, f_{2} are divisible by $x_{0} b-x_{1} a$ (since we proved that $I(\{(a: b)\})=\left\langle x_{0} b-x_{1} a\right\rangle$ on a previous exercise sheet) and away from ($a: b$) this quantity is nonzero. After dividing, we have

$$
f(x)=\left(f_{1}(x): f_{2}(x)\right)=\left(\frac{f_{1}}{x_{0} b-x_{1} a}(x): \frac{f_{2}}{x_{0} b-x_{1} a}(x)\right) .
$$

Thus we have reduced the degree of the defining polynomials and by induction we conclude that it extends on all of \mathbb{P}^{1}.
d) We have seen that a morphism \tilde{f} to \mathbb{A}^{1} must be given by a regular function on $D(g)$. On the other hand, this function must be given by $\widetilde{f}=h / g^{m}$ for some $m \in \mathbb{N}$ and $h \in K[x]$. Let $d=\operatorname{deg}(h)$ and $e=\operatorname{deg}(g)$ and set $M=\max (d, e m)$, then we define

$$
f: \mathbb{P}^{1}-\rightarrow \mathbb{P}^{1},\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}^{M} g\left(x_{1} / x_{0}\right)^{m}: x_{0}^{M} h\left(x_{1} / x_{0}\right)\right)
$$

On the affine patch U_{0} where we set $x_{0}=1$ this agrees with the map $\left(g\left(x_{1}\right)^{m}\right.$: $\left.h\left(x_{1}\right)\right)=\left(1: h\left(x_{1}\right) / g\left(x_{1}\right)^{m}\right)=\left(1: \widetilde{f}\left(x_{1}\right)\right)$, so indeed \widetilde{f} and f agree where they are defined.
e) Let $F: \mathbb{P}^{1} \supseteq U \rightarrow \mathbb{P}^{1}$ be any rational map. If F is constant and equal to $\infty=(0: 1)$ it can clearly be extended on all of \mathbb{P}^{1}. Otherwise, restricting to $U^{\prime}=F^{-1}\left(\mathbb{A}^{1}\right)$ we get a morphism $F: U^{\prime} \rightarrow \mathbb{A}^{1}$. But $U^{\prime} \subseteq \mathbb{A}^{1}$ is a non-empty open set and thus isomorphic to $U^{\prime}=D(g)$ for some g. By part d) the morphism F then agrees with a map f of the form (1). But this can be extended to all of \mathbb{P}^{1} by part c), finishing the proof.

Exercise 2. (Cremona transformation, see Gathmann Exercise 9.29)

Let $a=(1: 0: 0), b=(0: 1: 0), c=(0: 0: 1)$ be the three coordinate points of \mathbb{P}^{2} and $U=\mathbb{P}^{2} \backslash\{a, b, c\}$. Consider the morphism

$$
f: U \rightarrow \mathbb{P}^{2},\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right)
$$

a) Show that there is no morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ extending f.

Hint: For coordinates $\left(z_{0}: z_{1}: z_{2}\right)$ on the target, calculate $f^{-1}\left(V\left(z_{i}\right)\right)$.
b) Show that f is dominant and $f \circ f \sim \operatorname{id}_{\mathbb{P}^{2}}$ as rational maps $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$.

Bonus exercise:

c) Let $\widetilde{\mathbb{P}}^{2}$ be the blow-up of \mathbb{P}^{2} at $\{a, b, c\}$. Show that f extends to a morphism $\widetilde{\mathbb{P}}^{2} \rightarrow \mathbb{P}^{2}$.
Note: In fact it even extends to a isomorphism $\widetilde{\mathbb{P}}^{2} \rightarrow \widetilde{\mathbb{P}}^{2}$, called the Cremona transformation.

Solution.

a) We have $f^{-1}\left(V\left(z_{0}\right)\right)=V\left(x_{1} x_{2}\right) \cap U$ and similarly for the other coordinates z_{1}, z_{2}. If f extended to a morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ it would have to send the closure $V\left(x_{1} x_{2}\right)=$ $\bar{V}\left(x_{1} x_{2}\right) \cap U$ of this locus to $V\left(z_{0}\right)$. Taking the intersection of all of these, we have that all points in

$$
V\left(x_{1} x_{2}\right) \cap V\left(x_{0} x_{2}\right) \cap V\left(x_{0} x_{1}\right)=\{a, b, c\}
$$

must be sent to $V\left(z_{0}, z_{1}, z_{2}\right)=\emptyset$, giving a contradiction.
b) On the chart $U_{0}=\left\{x: x_{0} \neq 0\right\}$ of the domain, setting $x_{0}=1$, the map is given by

$$
f: U_{0} \backslash\{0\} \rightarrow \mathbb{P}^{2},\left(x_{1}, x_{2}\right) \mapsto\left(x_{1} x_{2}: x_{2}: x_{1}\right)=\left(1: 1 / x_{1}: 1 / x_{2}\right)
$$

where the last equality is allowed when $\left(x_{1}, x_{2}\right) \in\left(\mathbb{A}^{1} \backslash\{0\}\right)^{2}$. Since the map

$$
\left(\mathbb{A}^{1} \backslash\{0\}\right)^{2} \rightarrow\left(\mathbb{A}^{1} \backslash\{0\}\right)^{2},\left(x_{1}, x_{2}\right) \mapsto\left(1 / x_{1}, 1 / x_{2}\right)
$$

is an isomorphism, this proves that the image of f contains a non-empty open subset, and thus f is dominant. Composing it with itself we have

$$
f\left(f\left(x_{0}: x_{1}: x_{2}\right)\right)=\left(x_{0} x_{2} x_{0} x_{1}: x_{1} x_{2} x_{0} x_{1}: x_{1} x_{2} x_{0} x_{2}\right)=\left(x_{0}: x_{1}: x_{2}\right)
$$

where the equalities make sense whenever x_{0}, x_{1}, x_{2} are all nonzero, and where in the last equality we divide by $x_{0} x_{1} x_{2}$ in all components of the vector.
c) As seen above, on the chart U_{0} the map is given by

$$
f: U_{0} \backslash\{0\} \rightarrow \mathbb{P}^{2},\left(x_{1}, x_{2}\right) \mapsto\left(x_{1} x_{2}: x_{2}: x_{1}\right)
$$

Taking the closure inside the blow-up of a (which corresponds to $0 \in U_{0}$), we have coordinates $\left(\left(x_{1}, x_{2}\right),\left(y_{1}: y_{2}\right)\right)$ with $y_{1} x_{2}=y_{2} x_{1}$. In these coordinates we have

$$
\left(x_{1} x_{2}: x_{2}: x_{1}\right)=\left(x_{1} x_{2} y_{1}: x_{2} y_{1}: x_{1} y_{1}\right)=\left(x_{1} x_{1} y_{2}: x_{1} y_{2}: x_{1} y_{1}\right)=\left(x_{1} y_{2}: y_{2}: y_{1}\right)
$$

where in the first equality we multiply all components by y_{1}, in the second we use $x_{1} y_{2}=x_{2} y_{1}$ and in the third we divide all components by x_{1} (which is allowed as long as we have $x_{1} \neq 0$). This last vector in the equality is a well-defined point in \mathbb{P}^{2} (since $\left(y_{1}, y_{2}\right) \neq 0$ implies $\left.\left(x_{1} y_{2}, y_{2}, y_{1}\right) \neq 0\right)$. Thus indeed we can extend f over a (and similarly over b, c).

