Presence Sheet 9

Exercise 1. Consider the algebraic variety

$$
X=\{M \in \operatorname{Mat}(2 \times 2, K): \operatorname{det} M=0\}
$$

a) Show that X is irreducible of dimension 3 .
b) Show that the zero matrix $M=0$ is the only singular point of X.
c) Let $\widetilde{X}=\mathrm{Bl}_{0} X$ be the blow-up of X at the origin.
i) Show that \tilde{X} is smooth.
ii) Show that the exceptional locus is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Note: The variety X is called the cone over the quadric surface, and the blow-up $\widetilde{X} \rightarrow X$ is the resolution of the conical singularity.

Solution.

a) Since det is a nonzero irreducible polynomial (e.g. by the Eisenstein criterion), we know that X is an irreducible hypersurface (by Krull's principal ideal theorem), and thus of dimension 3 .
b) For $M=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$ we have $\operatorname{det}(M)=x_{1} x_{4}-x_{2} x_{3}$. Its Jacobi matrix is thus given by

$$
J=\left(\frac{\partial \operatorname{det}(M)}{\partial x_{i}}\right)_{i=1, \ldots, 4}=\left(\begin{array}{llll}
x_{4} & -x_{3} & -x_{2} & x_{1}
\end{array}\right) .
$$

It vanishes precisely when $x_{4}=x_{3}=x_{2}=x_{1}=0$, so at $M=0$, thus this is the only singular point by the affine Jacobi criterion.
c) We know that

$$
\widetilde{X} \subset \widetilde{\mathbb{A}}^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}: y_{2}: y_{3}: y_{4}\right) \in \mathbb{A}^{4} \times \mathbb{P}^{3}: x_{i} y_{j}=x_{j} y_{i} \forall i, j\right\}
$$

i) It suffices to check this on the affine patch $U=\left\{(x, y) \in \widetilde{X}: y_{1} \neq 0\right\}$, with the other affine patches being similar. This patch has coordinates $\left(x_{1}, y_{2}, y_{3}, y_{4}\right)$ with setting $y_{1}=1$ and $x_{j}=x_{1} y_{j}$ for $j=2,3,4$. Thus in these coordinates, the determinant is given by

$$
x_{1} x_{4}-x_{2} x_{3}=x_{1}\left(x_{1} y_{4}\right)-\left(x_{1} y_{2}\right)\left(x_{1} y_{3}\right)=x_{1}^{2}\left(y_{4}-y_{2} y_{3}\right) .
$$

Taking the strict transform means removing the preimage of the origin (which in U is given by $\left.V\left(x_{1}\right)\right)$ and then taking the Zariski closure. This removes $V\left(x_{1}^{2}\right)=V\left(x_{1}\right)$ from the above equation, so

$$
\widetilde{X} \cap U \cong V\left(y_{4}-y_{2} y_{3}\right) \cong \mathbb{A}^{3}
$$

where the last isomorphism sends $\left(x_{1}, y_{2}, y_{3}\right) \in \mathbb{A}^{3}$ to $\left(x_{1}, y_{2}, y_{3}, y_{2} y_{3}\right) \in U$. Since \mathbb{A}^{3} is smooth, this finishes the proof.
ii) Intersecting \widetilde{X} with the exceptional set of the blow-up $\widetilde{\mathbb{A}}^{4} \rightarrow \mathbb{A}^{4}$ in the chart U above corresponds to setting $x_{1}=0$, which does not actually affect the equation, so on U the exceptional locus is just $V\left(y_{4}-y_{2} y_{3}\right) \subseteq\left\{\left(1: y_{2}: y_{3}: y_{4}\right) \in\right.$ $\left.\mathbb{P}^{3}\right\}$. Taking the projective closure corresponds to homogenizing this equation, giving us $Y=V_{p}\left(y_{1} y_{4}-y_{2} y_{3}\right) \subseteq \mathbb{P}^{3}$ where we use coordinates $y_{1}, y_{2}, y_{3}, y_{4}$ on \mathbb{P}^{3}. To make sure we do not miss any other parts of the exceptional locus, we could repeat this calculation on the other charts of $\widetilde{\mathbb{A}}^{4}$ and would always exactly obtain the different affine charts of $Y \subseteq \mathbb{P}^{3}$. We saw that this quadric Y is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ (via the Segre embedding), finishing the proof.

Exercise 2. Recall from Presence Sheet 4 the notion of a linear algebraic group $G=(G, m, i, e)$. Show that any linear algebraic group is smooth.
Hint: Combine [Gathmann, Remark 10.20] with the strategies and results applied on Presence Sheet 4.

Solution. The Remark from the above hint explains the result on generic smoothness, showing that the smooth locus of G is dense, so in particular there exists a smooth point $q \in G$. Take any other point $p \in G$, then we saw on the above presence sheet that there is an isomorphism $\varphi: G \rightarrow G$ sending q to p (by left-translation with $p q^{-1}$). We saw that the tangent space is an intrinsic invariant (e.g. can be calculated from the local ring) and thus an isomorphism sends smooth points to smooth points. Since q is smooth we thus also have that p is smooth.

