Exercise Sheet 1

Exercise 1. Consider the ideal $J=\left\langle x_{i}-x_{1} x_{i-1}: i=2, \ldots, n\right\rangle \unlhd K\left[x_{1}, \ldots, x_{n}\right]$ and let $X=V(J) \subseteq \mathbb{A}^{n}$ be its vanishing locus.
(a) Show that the projection

$$
\pi: X \rightarrow \mathbb{A}^{1},\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}
$$

is a bijection. Calculate the inverse map $\pi^{-1}: \mathbb{A}^{1} \rightarrow X$ parameterizing X.
(b) Show that J is a prime ideal.

Hint: Calculate the quotient $K\left[x_{1}, \ldots, x_{n}\right] / J$.
(c) Conclude that $J=I(X)$ and compute the coordinate ring $A(X)$.

Exercise 2. Determine the radical of the ideal $J=\left\langle x_{1}^{3}-x_{2}^{6}, x_{1} x_{2}-x_{2}^{3}\right\rangle \subseteq \mathbb{C}\left[x_{1}, x_{2}\right]$. Hint: The Nullstellensatz might be useful here.

Exercise 3. Let $X \subset \mathbb{A}^{n}$ be an affine variety. Show that the coordinate ring $A(X)$ is a field if and only if X is a single point.

Exercise 4. Let $X \subset \mathbb{A}^{3}$ be the union of the three coordinate axes.
(a) Compute generators for the ideal $I(X)$.
(b) Show that $I(X)$ cannot be generated by fewer than three elements.

