Exercise Sheet 1

Exercise 1. Consider the ideal $J = \langle x_i - x_1 x_{i-1} : i = 2, ..., n \rangle \leq K[x_1, ..., x_n]$ and let $X = V(J) \subseteq \mathbb{A}^n$ be its vanishing locus.

(a) Show that the projection

$$\pi: X \to \mathbb{A}^1, (x_1, \dots, x_n) \mapsto x_1$$

is a bijection. Calculate the inverse map $\pi^{-1} : \mathbb{A}^1 \to X$ parameterizing X.

- (b) Show that J is a prime ideal. Hint: Calculate the quotient $K[x_1, \ldots, x_n]/J$.
- (c) Conclude that J = I(X) and compute the coordinate ring A(X).

Exercise 2. Determine the radical of the ideal $J = \langle x_1^3 - x_2^6, x_1x_2 - x_2^3 \rangle \subseteq \mathbb{C}[x_1, x_2]$. *Hint*: The Nullstellensatz might be useful here.

Exercise 3. Let $X \subset \mathbb{A}^n$ be an affine variety. Show that the coordinate ring A(X) is a field if and only if X is a single point.

Exercise 4. Let $X \subset \mathbb{A}^3$ be the union of the three coordinate axes.

- (a) Compute generators for the ideal I(X).
- (b) Show that I(X) cannot be generated by fewer than three elements.