Exercise Sheet 13

Exercise 1.

a) Any morphism $f: \mathcal{F} \to \mathcal{G}$ of sheaves of modules on a scheme X determines induced $\mathcal{O}_{X,p}$ -module homomorphisms

$$f_p: \mathcal{F}_p \to \mathcal{G}_p, [(U, \phi)] \mapsto [(U, f_U(\phi))],$$

on the stalks for all $p \in X$. Show that f is an isomorphism if and only if all f_p are isomorphisms.

b) Conclude that f is an isomorphism if and only if f is injective and surjective.

Exercise 2. Let \mathcal{F} be a presheaf on a scheme X, and denote by $\theta : \mathcal{F} \to \mathcal{F}^{sh}$ its sheafification. Prove that any morphism $f' : \mathcal{F} \to \mathcal{G}$ to a sheaf \mathcal{G} factors uniquely through θ , i.e., there is a unique morphism $f : \mathcal{F}^{sh} \to \mathcal{G}$ with $f' = f \circ \theta$.

Exercise 3. Let X be a topological space and consider the presheaves

 $\mathcal{F}(U) = \{ \varphi : U \to \mathbb{R} : \varphi \text{ continuous and bounded} \} \text{ for } U \subseteq X \text{ open} , \\ \mathcal{C}_X(U) = \{ \varphi : U \to \mathbb{R} : \varphi \text{ continuous} \} \text{ for } U \subseteq X \text{ open} .$

- a) Give an example of a space X where \mathcal{F} is not a sheaf.
- b) Convince yourself that \mathcal{C}_X is a sheaf.
- c) Show that the sheafification of \mathcal{F} is given by the sheaf \mathcal{C}_X .
- d) Let $p: X \to {\text{pt}} =: Y$ be the constant map to a point. What is the sheaf $p_* \mathcal{C}_X$?

Note: Here we use sheafification for sheaves on an arbitrary topological space. The definition of sheafification here is just exactly the same as for schemes.

Exercise 4. Let $n \in \mathbb{N}_{>0}$ and $d \in \mathbb{Z}$. Prove that $\mathcal{O}_{\mathbb{P}^n}(d)^{\vee} \cong \mathcal{O}_{\mathbb{P}^n}(-d)$. *Note:* For inspiration you can re-read the proof from [Gathmann, Example 13.23]. In your proof, you might want to use the presheaf $\mathcal{O}_{\mathbb{P}^n}(d)^{\vee, \text{pre}}$ given by $U \mapsto \text{Hom}_{\mathcal{O}_U}(\mathcal{O}_{\mathbb{P}^n}(d)|_U, \mathcal{O}_U)$.