Exercise Sheet 14

Exercise 1. Let $f: X \to Y$ and $g: Y \to Z$ be morphisms of schemes.

- a) Recall the definition of all the data involved, and then define what the composition $g \circ f : X \to Z$ is. Verify that it satisfies all necessary properties.
- b) For $X = \operatorname{Spec}(R)$, $Y = \operatorname{Spec}(S)$ and $Z = \operatorname{Spec}(T)$ with f, g coming from ring homomorphisms $S \to R, T \to S$ the composition $g \circ f$ comes from the composite morphism $T \to S \to R$.

Note: Cynics might say that we should probably have done this in class, and they wouldn't be entirely wrong \dots

Exercise 2. Let \mathcal{F} be an invertible sheaf (i.e. locally free of rank 1) on $\mathbb{A}^1_K = \operatorname{Spec} K[x]$ for K a field. Our goal below is to show that $\mathcal{F} \cong \mathcal{O}_{\mathbb{A}^1_K}$ is trivial.

- a) Why is \mathcal{F} is of the form $\mathcal{F} = \widetilde{M}$ for M a module over K[x]?
- b) Let $D(f_i) \subseteq \mathbb{A}^1_K$ be a distinguished open such that there is an isomorphism

$$\varphi_i: \widetilde{R_{f_i}} = \mathcal{O}_{D(f_i)} \xrightarrow{\sim} \mathcal{F}|_{D(f_i)} = \widetilde{M}_{f_i}.$$

Let $\varphi_i(1) = m_i / f_i^{r_i}$ for $m_i \in M$ and $r_i \in \mathbb{N}$. Show that the map

 $s_i: \widetilde{R} \to \widetilde{M}$ induced by $R \to M, a \mapsto am_i$

induces surjective maps of stalks $s_{i,p}: R_p \to M_p$ for all $p \in D(f_i)$.

- c) Show that \mathcal{F} is of the form $\mathcal{F} = \widetilde{M}$ for M a finitely generated module over K[x]. *Hint:* Choose a finite cover of \mathbb{A}^1_K by sets $D(f_1), \ldots, D(f_n)$ as in the previous part of the exercise and construct a surjection $\mathbb{R}^n \to M$.
- d) Prove that $\mathcal{F} \cong \mathcal{O}_{\mathbb{A}^1_K}$ is trivial. *Hint:* Recall a certain statement about finitely generated modules over principal ideal domains.

Exercise 3. The goal of this exercise is to prove that for K an algebraically closed field, the set of automorphisms of \mathbb{P}^n_K over K is isomorphic to the projective linear group $\mathrm{PGL}(n+1,K)$. The crucial input for the proof will be the following result, which you can use below:

Thm. Any invertible sheaf \mathcal{L} on \mathbb{P}^n_K is of the form $\mathcal{L} \cong \mathcal{O}_{\mathbb{P}^n_K}(d)$ for some $d \in \mathbb{Z}$.

- a) Show that for $f: X \to Y$ a morphism and \mathcal{F}, \mathcal{G} locally free sheaves on Y, one has $f^*(\mathcal{F} \otimes \mathcal{G}) \cong (f^*\mathcal{F}) \otimes (f^*\mathcal{G})$. *Hint:* You can use without proof that it's sufficient to show this for X, Y affine schemes and \mathcal{F}, \mathcal{G} trivial, i.e. direct sums of \mathcal{O}_Y .
- b) Recall from class that any morphism $f: X \to \mathbb{P}_K^n$ is given by the data of an invertible sheaf $\mathcal{L}_f = f^* \mathcal{O}_{\mathbb{P}_K^n}(1)$ together with sections $s_0, \ldots, s_n \in \mathcal{L}(X)$ not vanishing simultaneously anywhere on X. Assume that $f: \mathbb{P}_K^n \to \mathbb{P}_K^n$ and $g: \mathbb{P}_K^n \to \mathbb{P}_K^n$ are given by line bundles $\mathcal{L}_f = \mathcal{O}_{\mathbb{P}_K^n}(d_f)$ and $\mathcal{L}_g = \mathcal{O}_{\mathbb{P}_K^n}(d_g)$. Show that we have $d_f, d_g \geq 0$ and the composition $g \circ f$ is given by $\mathcal{L}_{g \circ f} \cong \mathcal{O}_{\mathbb{P}_K^n}(d_f \cdot d_g)$.
- c) Conclude that for any isomorphism $f: \mathbb{P}^n_K \xrightarrow{\sim} \mathbb{P}^n_K$ one has $f^*\mathcal{O}_{\mathbb{P}^n_K}(1) \cong \mathcal{O}_{\mathbb{P}^n_K}(1)$.
- d) Finish the proof that any automorphism $f \in \operatorname{Aut}_K(\mathbb{P}^n_K, \mathbb{P}^n_K)$ is given by a projective linear map in $\operatorname{PGL}(n+1, K)$.