Exercise Sheet 3

Exercise 1. Let $\varphi, \psi \in \mathcal{F}(U)$ be two sections of a sheaf \mathcal{F} on an open subset U of a topological space X. Show:
a) If φ and ψ agree in all stalks i.e., $[(U, \varphi)]=[(U, \psi)] \in \mathcal{F}_{a}$ for all $a \in U$ then $\varphi=\psi$.
b) If $\mathcal{F}=\mathcal{O}_{X}$ is the sheaf of regular functions on an irreducible affine variety X then we can already conclude that $\varphi=\psi$ if we only know that they agree in one stalk \mathcal{F}_{a} for $a \in U$.
Hint: It might help to first cover U by distinguished affine open subsets.
c) For a general sheaf \mathcal{F} on a topological space X the statement of (b) is false.

Exercise 2. Let a be any point on the real line \mathbb{R}. For which of the following sheaves \mathcal{F} on \mathbb{R} (with the standard topology) is the stalk \mathcal{F}_{a} actually a local ring in the algebraic sense (i.e., it has exactly one maximal ideal)?
a) \mathcal{F} is the sheaf of continuous functions;
b) \mathcal{F} is the sheaf of locally polynomial functions.

Exercise 3. Let Y be a non-empty irreducible subvariety of an equidimensional affine variety X and set $U=X \backslash Y$.
a) Assume that $A(X)$ is a unique factorization domain. Show that $\mathcal{O}_{X}(U)=A(X)$ if and only if $\operatorname{codim}_{X} Y \geq 2$.
b) Show by example that the equivalence of (a) is in general false if $A(X)$ is not assumed to be a unique factorization domain.
Note: It's pretty hard (but not impossible) to given an example with X irreducible, but feel free to look for a reducible example.

Exercise 4. Let \mathcal{F} be a sheaf on a topological space X and let Y be a non-empty irreducible closed subset of X. We define the stalk of \mathcal{F} at Y to be

$$
\mathcal{F}_{Y}:=\{(U, \varphi): U \text { is an open subset of } X \text { with } U \cap Y \neq \emptyset \text { and } \varphi \in \mathcal{F}(U)\} / \sim
$$

where $(U, \varphi) \sim\left(U^{\prime}, \varphi^{\prime}\right)$ if and only if there is an open set $V \subset U \cap U^{\prime}$ with $V \cap Y \neq \emptyset$ and $\left.\varphi\right|_{V}=\left.\varphi^{\prime}\right|_{V}$. It therefore describes functions in an arbitrarily small neighborhood of an arbitrary dense open subset of Y.

If Y is a non-empty irreducible subvariety of an affine variety X prove that the stalk $\mathcal{O}_{X, Y}$ of \mathcal{O}_{X} at Y is a K-algebra isomorphic to the localization $A(X)_{I(Y)}$ (hence giving a geometric meaning to this algebraic localization).

