Exercise Sheet 4

As in class let \mathbb{P}^1 be the prevariety obtained by gluing two copies of the affine line \mathbb{A}^1 along the isomorphism $\mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^1 \setminus \{0\}$, $x \to \frac{1}{x}$. By the inclusion of one of the copies, we consider \mathbb{A}^1 as an open subprevariety of \mathbb{P}^1 .

Exercise 1. Which of the following ringed spaces are isomorphic over \mathbb{C} ?

- $a) \mathbb{A}^1$
- b) $V(x_1^2 + x_2^2) \subseteq \mathbb{A}^2$
- c) $V(x_2 x_1^2, x_3 x_1^3) \setminus \{0\} \subseteq \mathbb{A}^3$
- d) $V(x_2^2 x_1^2 x_3 x_1^3) \setminus \{0\} \subseteq \mathbb{A}_3$
- e) $V(x_1x_2) \subseteq \mathbb{A}^2$
- $f) \mathbb{A}^1 \setminus \{1\}$

Exercise 2. Let $f: X \to Y$ be a morphism of affine varieties and $f^*: A(Y) \to A(X)$ the corresponding homomorphism of the coordinate rings. Are the following statements true or false?

- a) f is surjective if and only if f^* is injective.
- b) f is injective if and only if f^* is surjective.
- c) If $f : \mathbb{A}^1 \to \mathbb{A}^1$ is an isomorphism then f is affine linear i.e. of the form f(x) = ax + b for some $a, b \in K$.
- d) If $f : \mathbb{A}^2 \to \mathbb{A}^2$ is an isomorphism then f is affine linear i.e. it is of the form f(x) = Ax + b for some $A \in \operatorname{Mat}(2 \times 2, K)$ and $b \in K^2$.

Exercise 3. Prove the following statements:

- a) Every morphism $\mathbb{A}^1 \setminus \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\mathbb{A}^1 \to \mathbb{P}^1$.
- b) Not every morphism $\mathbb{A}^2 \setminus \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\mathbb{A}^2 \to \mathbb{P}^1$.
- c) Every morphism $\mathbb{P}^1 \to \mathbb{A}^1$ is constant.

Exercise 4. If X and Y are affine varieties we have seen that there is a bijection

{morphisms $X \to Y$ } \longleftrightarrow {K-algebra homomorphisms $\mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$ }, $f \mapsto f^*$.

- a) Does this statement still hold if X is an arbitrary prevariety (but Y is still affine)?
- b) Does this statement still hold if Y is an arbitrary prevariety (but X is still affine)?