Exercise Sheet 6

Exercise 1. Let $m, n \in \mathbb{N}_{>0}$. Prove:
a) If $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is a morphism and $X \subset \mathbb{P}^{m}$ a hypersurface then every irreducible component of $f^{-1}(X)$ has dimension at least $n-1$.
Hint: Use that locally on an affine cover of \mathbb{P}^{m}, the hypersurface X is cut out by a single equation.
b) Show that any morphism $f: \mathbb{P}^{n} \rightarrow \mathbb{A}^{m}$ is constant.
c) If $n>m$ then every morphism $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is constant.

Hint: Consider the preimages of the hyperplanes $V\left(x_{i}\right) \subseteq \mathbb{P}^{m}$ under f.
d) $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is not isomorphic to \mathbb{P}^{n+m}.

Exercise 2. Let us say that $n+2$ points in \mathbb{P}^{n} are in general position if for any $n+1$ of them their representatives in K^{n+1} are linearly independent.
Now let a_{1}, \ldots, a_{n+2} and b_{1}, \ldots, b_{n+2} be two sets of points in \mathbb{P}^{n} in general position.
a) Show that the collection $A_{1}=e_{0}=(1: 0: \ldots: 0), A_{2}=e_{1}=(0: 1: 0: \ldots: 0), \ldots$, $A_{n+1}=e_{n}=(0: \ldots: 0: 1), A_{n+1}=(1: 1: \ldots: 1)$ is in general position.
b) Show that there is an isomorphism $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ with $f\left(a_{i}\right)=b_{i}$ for all $i=1, \ldots, n+$ 2.

Exercise 3. Show by example that the homogeneous coordinate ring of a projective variety is not invariant under isomorphisms i.e., that there are isomorphic projective varieties X, Y such that the graded K-algebras $S(X)$ and $S(Y)$ are not isomorphic.

Exercise 4. A conic over a field of characteristic not equal to 2 is an irreducible curve in \mathbb{P}^{2} of degree 2.
a) Using the coefficients of quadratic polynomials show that the set of all conics can be identified with an open subset U of \mathbb{P}^{5}. (One says that U is a moduli space for conics.)
b) Given a point $p \in \mathbb{P}^{2}$ show that the subset of U consisting of all conics passing through p is the zero locus of a linear equation in the homogeneous coordinates of $U \subset \mathbb{P}^{5}$.
c) Given 5 points in \mathbb{P}^{2}, no three of which lie on a line, show that there is a unique conic passing through all these points.

