Exercise Sheet 6

Exercise 1. Let $m, n \in \mathbb{N}_{>0}$. Prove:

- a) If $f : \mathbb{P}^n \to \mathbb{P}^m$ is a morphism and $X \subset \mathbb{P}^m$ a hypersurface then every irreducible component of $f^{-1}(X)$ has dimension at least n-1. *Hint:* Use that locally on an affine cover of \mathbb{P}^m , the hypersurface X is cut out by a single equation.
- b) Show that any morphism $f : \mathbb{P}^n \to \mathbb{A}^m$ is constant.
- c) If n > m then every morphism $f : \mathbb{P}^n \to \mathbb{P}^m$ is constant. *Hint:* Consider the preimages of the hyperplanes $V(x_i) \subseteq \mathbb{P}^m$ under f.
- d) $\mathbb{P}^n \times \mathbb{P}^m$ is not isomorphic to \mathbb{P}^{n+m} .

Exercise 2. Let us say that n + 2 points in \mathbb{P}^n are in general position if for any n + 1 of them their representatives in K^{n+1} are linearly independent.

Now let a_1, \ldots, a_{n+2} and b_1, \ldots, b_{n+2} be two sets of points in \mathbb{P}^n in general position.

- a) Show that the collection $A_1 = e_0 = (1 : 0 : ... : 0), A_2 = e_1 = (0 : 1 : 0 : ... : 0), ..., A_{n+1} = e_n = (0 : ... : 0 : 1), A_{n+1} = (1 : 1 : ... : 1)$ is in general position.
- b) Show that there is an isomorphism $f : \mathbb{P}^n \to \mathbb{P}^n$ with $f(a_i) = b_i$ for all $i = 1, \ldots, n + 2$.

Exercise 3. Show by example that the homogeneous coordinate ring of a projective variety is not invariant under isomorphisms i.e., that there are isomorphic projective varieties X, Y such that the graded K-algebras S(X) and S(Y) are not isomorphic.

Exercise 4. A conic over a field of characteristic not equal to 2 is an irreducible curve in \mathbb{P}^2 of degree 2.

- a) Using the coefficients of quadratic polynomials show that the set of all conics can be identified with an open subset U of \mathbb{P}^5 . (One says that U is a moduli space for conics.)
- b) Given a point $p \in \mathbb{P}^2$ show that the subset of U consisting of all conics passing through p is the zero locus of a linear equation in the homogeneous coordinates of $U \subset \mathbb{P}^5$.
- c) Given 5 points in \mathbb{P}^2 , no three of which lie on a line, show that there is a unique conic passing through all these points.